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In this paper we study Dirac—Hestenes spinor fields (DHSF) on a four-dimensional
Riemann-Cartan spacetime (RCST). We prove that these fields must be defined
as certain equivalence classes of even sections of the Clifford bundle (over the
RCST), thereby being certain particular sections of a new bundle named the spin-
Clifford bundle (SCB). The conditions for the existence of the SCB are studied
and are shown to be equivalent to Geroch’s theorem concerning the existence of
spinor structures in a Lorentzian spacetime. We introduce also the covariant and
algebraic Dirac spinor fields and compare these with DHSF, showing that all three
kinds of spinor fields contain the same mathematical and physical information. We
clanify also the notion of (Crumeyrolle's) amorphous spinors (Dirac—Kéhler spinor
fields are of this type), showing that they cannot be used to describe fermionic
fields. We develop a rigorous theory for the covariant derivatives of Clifford
fields (sections of the Clifford bundle, CB) and of Dirac~Hestenes spinor fields.
We show how to generalize the original Dirac—Hestenes equation in Minkowski
spacetime for the case of RCST. Our results are obtained from a variational
principle formulated through the multiform derivative approach to Lagrangian
field theory in the Clifford bundle.

1. INTRODUCTION

In the following we study the theory of Dirac—Hestenes spinor fields
(DHSF) and the theory of their covariant derivatives on a Riemann-Cartan
spacetime (RCST). We also show how to generalize the so-called Dirac—
Hestenes equation—originally introduced in Hestenes (1967, 1976) for the
formulation of the Dirac theory of the electron using the spacetime algebra
#/} 5 in Minkowski spacetime—for an arbitrary Riemann—Cartan spacetime.
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We use an approach based on the multiform derivative formulation of Lagran-
gian field theory to obtain the above results. They are important for the study
of spinor fields in gravitational theory and are essential for an understanding
of the relationship between the Maxwell and Dirac theories and quantum
mechanics (Vaz and Rodrigues, 1993a, 1995).

In order to achieve our goals we start by clarifying many misconceptions
concerning the usual presentation of the theory of covariant, algebraic, and
Dirac—Hestenes spinors. Section 2 is dedicated to this subject and we believe
that it improves over other presentations (e.g., Vaz and Rodrigues, 1993a;
Figueiredo er al., 1990ab; Rodrigues and Oliveira, 1990; Rodrigues and
Figueiredo, 1990; Lounesto, 1993, 1994; Benn and Tucker, 1987; Blau, 1985).
introducing a new and important fact, namely that all kind of spinors referred
to above must be defined as special equivalence classes in appropriate Clifford
algebras. The hidden geometrical meaning of the covariant Dirac spinor is
disclosed and the physical and geometrical meaning of the famous Fierz
identities (Rodrigues and Figueiredo, 1990; Lounesto, 1993; Fierz, 1937;
Crawford, 1985) becomes obvious.

In Section 3 we study the Clifford bundie of a Riemann—Cartan spacetime
(de Souza and Rodrigues, 1994) and its irreducible module representations.
This permits us to define Dirac~Hestenes spinor fields (DHSF) as certain
equivalence classes of even sections of the Clifford bundle. DHSF are then
naturally identified with sections of a new bundle which we call the spin-
Clifford bundle.

We discuss also the concept of amorphous spinor fields (ASF)—a name
introduced by Crumeyrolle (1991). The so-called Dirac—Kihler spinors
(Kihler, 1962) discussed by Graf (1978) and used in presentations of field
theories in the lattice (Becher, 1981; Becher and Joos, 1982) are examples
of ASF. We prove that they cannot be used to describe fermion fields because
they cannot be used to properly formulate the Fierz identities.

In Section 4 we show how the Clifford and spin-Clifford bundle tech-
niques permit us to give a simple presentation of the concept of covariant
derivative for Clifford fields, algebraic Dirac spinor fields, and the DHSF.
We show that our elegant theory agrees with the standard one developed for
the so-called covariant Dirac spinor fields as developed, e.g., in Lichnerowicz
(1964, 1984).

In Section 5 we introduce the concepts of Dirac and spin-Dirac operators
acting respectively on sections of the Clifford and spin-Clifford bundles. We
show how to use the spin-Dirac operator on the representatives of DHSF on
the Clifford bundle.

In Section 6 we present the multiform derivative approach to Lagrangian
field theory and derive the Dirac—Hestenes equation on RCST (Choquet-
Bruhat er al., 1982). We compare our results with others for the covariant
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Dirac spinor field (Rodrigues et al., 1994; Heh! and Datta, 1971) and also
for Dirac—Kiihler fields (Kihler, 1962; Graf, 1978; Ivanenko and Obuk-
hov, 1985).

Finally in Section 7 we present our conclusions.

2. COVARIANT, ALGEBRAIC, AND DIRAC-HESTENES
SPINORS

2.1. Some General Features about Clifford Algebras

In this section we fix our notations and introduce the main ideas concern-
ing the theory of Clifford algebras necessary for the intelligibility of the
paper. We follow with minor modifications the conventions used in Rodrigues
and Figueiredo (1990) and Lounesto (1993).

2.1.1. Formal Definition of the Clifford Algebra €7(V, Q)

Let K be a field, char K # 2,* V a vector space of finite dimension n
over K, and Q a nondegenerate quadratic form over V. Denote by

xy =HOx +y) — Qx) — Q) (hH

The associated symmetric bilinear form on V and define the left contraction
1 AV X AV > AV and the right contraction L: AV X AV — AV by the
following rules:

1. ny=x-y
x[_y=x-y

2. xJ(ze/\v)=(xju)/\erﬁA(va)
(uAv)Lx=u/\(vl_x)+(ul_x)/\\7

3. (u/\v)_|w=u_|(u_[w)
ul_(vx\w)Z(uLv)Lw

Here x,y € V, u, v, w &€ AV, and " is the grade involution in the algebra AV.
The notation a-b will be used for contractions when it is clear from the
context which factor is the contractor and which factor is being contracted.
When just one of the factors is homogeneous, it is understood to be the
contractor. When both factors are homogeneous, we agree that the one with
lower degree is the contractor, so that fora € A’V and b € A"V, we have
a-b=a bifr=sanda-b=albifr=s.
Define the (Clifford) product of x € Vand u € AV by

xu=xru+xlu (2)

*In our applications in this paper, K will be R or C, respectively, the real or complex field.
The quaternion ring will be denoted by H.
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and extend this product by linearity and associativity to all of AV This
provides AV with a new product, and provided with this new product AV
becomes isomorphic to the Clifford algebra €/ (V, Q).

We recall that AV = T(V)//, where T(V) is the tensor algebra of V and
I C T(Vy is the bilateral ideal generated by the elements of the form x ® x,
x € V. It can also be shown that the Clifford algebra of (V, 0) is Z(V, Q)
= T(V)lly, where I, is the bilateral ideal generated by the elements of the
form x ® x — O(x), x € V. The Clifford algebra so constructed is an
associative algebra with unity. Since K is a field, the space V is naturally
imbedded in #7(V, Q),

Ve (V) S TWilp = @Y, 0)
Ip=joi and V=iyV)C &Y, Q) 3)

Let @V, Q) [resp., 7 (V, Q)] be the j-image of ®Z, T*(V) [resp., B
T**Y(V)] in €7(V. Q). The elements of % *(V, Q) form a subalgebra of €/ (V,
Q) called the even subalgebra of ##(V, Q).

%/(V, Q) has the following property: If A is an associative K-algebra
with unity, then all linear mappings p: V — A such that (p(x))* = Q(x), x €
V, can be extended in a unique way to an algebra homomorphism p: €7 (V,
0) - A.

In #7(V, Q) there exist three linear mappings which are quite natural.
They are extensions of the following mappings:

Main Involution. An automorphism "~ €#(V, Q) — #7(V, ), extension
of a: V— T(W)ly, a{x) = —iglx) = —x, Vx € V.

Reversion. An antiautomorphism ~: 24V, @) — %7(V, Q), extension of
CTWV) ST WV, TV s x=x,8 - Qx, = x=x,8 - Qux,.

Conjugation. : #(V, Q) — & (V, Q), defined by the composition of
the main involution * with the reversion 7, ie., if x € €V, Q), then ¥ =

@)~ ="

#7(V, Q) can be described through its generators, i.e., if 2 = {E;} (i =
1,2,..., n) is a Q-orthonormal basis of V, then €#(V, Q) is generated by 1
and the E; are subject to the conditions

EE; = (XE)
EiEj+E}Ei=O, i#j, Lj=1,2,...,n
E]Ez"'E,,#‘il (4)
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2.1.2. The Real Clifford Algebra #7,,

Let R™ be a real vector space of dimension n = p + g endowed with
a nondegenerate metric g: R™ X R > R. LetX = {E} (i = 1,2,...,n)
be an orthonormal basis of R,

+1, i=j=12....p

8ELE)=g,=g; = -1, i=j=p+1,...,p+tqg=n (5
0, i#j

The Clifford algebra %7, = 7 (R"9, Q) is the Clifford algebra over R,
generated by | and the {E;} (i = 1, 2, ..., n) such that E} = Q(E)) = g(E,,
E). E.E; = —E;E; (i # j), and (Ablamowicz et al., 1991) E\E;, - E, #
*1. The algebra %7, is obviously of dimension 2" and as a vector space it
is the direct sum of vector spaces AF R”¢ of dimensions (}), 0 < k =< n. The
canonical basis of A* R7 is given by the elements e, = E,, -+ E,. 1 = «
< --- < oy =< n The element ¢; = E, --+ E, € A" R™ commutes (n odd)
or anticommutes (n even) with all vectors E,, ..., E, € A'R? = R, The
center of %7, , is AR" = R if n is even and it is the direct sum A°R™Y @
A'RP4if 1 is odd.

All Clifford algebras are semisimple. If p + ¢ = n is even, &, is
simple, and if p + ¢ = n is odd, we have the following possibilities:

1. #,,issimple @ ¢j = —1 < p — g # 1 (mod 4) < center of &,
is isomorphic to C.

2. #,,is not simple (but is a direct sum of two simple algebras) <
¢ =+1ep—g=1(mod4) « center of #,, is isomorphic to
R®R

All these semisimple algebras are direct sums of two simple algebras.

If A is an associative algebra on the field K, K C A, and if E is a vector
space, a homomorphism p from A to End E (End E is the endomorphism
algebra of E) which maps the unit element of A to Id; is a called a representa-
tion of A in E. The dimension E is called the degree of the representation.
The addition in E together with the mapping A X E — E, (a, x) —~ p(a)x
turns £ into an A-module, the representation module.

Conversely, A being an algebra over K and E being an A-module, E is
a vector space over K and if @ € A, the mapping v: A — vy, with y,(x) =
ax, x € E, is a homomorphism A — End E, and so it is a representation of
A in E. The study of A-modules is then equivalent to the study of the
representations of A. A representation p is faithful if its kernel is zero, i.e.,
p(a)x =0, Vx € E = a = 0. The kernel of p is also known as the annihilator
of its module. p is said to be simple or irreducible if the only invariant
subspaces of p(a), Va € A, are E and {0}. Then the representation module
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is also simple, meaning that it has no proper submodule. p is said to be
semisimple if it is the direct sum of simple modules, and in this case E is
the direct sum of subspaces which are globally invariant under p(a), Va <
A. When no confusion arises p(a)x will be denoted by a * x, a * x, or ax.
Two A-modules E and E’ (with the exterior multiplication being denoted
respectively by « and *) are isomorphic if there exists a bijection ¢: £ — E’
such that

ex +y) = @x) + o(y), Vx,veE
pla * x) = a* e(x), VYa e A (6)

and we say that representations p and p’ of A are equivalent if their modules
are isomorphic. This implies the existence of a K-linear isomorphism ¢: E
— E' such that g ° p(a) = p'(a@)° ¢, Va € A, orp'(a) = 9o pla)e @ ' If
dim E = n, then dim £’ = n. We shall need the following result.

Wedderburn Theorem {Porteous, 1969). If A is a simple algebra, then A
is equivalent to F(m), where F(im) is a matrix algebra with entries in F, F is
a division algebra, and m and F are unique (modulo isomorphisms).

2.2. Minimal Left Ideas of 7,

The minimal left (resp., right) ideals of a semisimple algebra A are of
the type Ae (resp., eA), where e is a primitive idempotent of 4, i.e., e = e
and e cannot be written as a sum of two nonzero annihilating (or orthogonal)
idempotents, i.e., ¢ # e, + e, where eje, = e, = 0, €] = ¢, €3 = 5.

Theorem. The maximum number of pairwise annihilating idempotents
in F(m) is m.

The decomposition of %7, , into minimal ideals is then characterized by
a spectral set {e,,;} of idempotents of %7, satisfying (i) p eppi = 15 (i)
€p4.i€pq; = Oij€pyis (iil) rank of e, ; is minimal #0, i.e., e,,; is primitive (i =
L2, ..., m.

By rank of e,,; we mean the rank of the AR”"“-morphism e,,;: ¢ -
Ye,,; and AR™ = D}, AH(RP9) is the exterior algebra of R”4. Then Epy =
2l 1, = Epyepqgir and Y € 1 g 18 such.that Ve, = Y. Con.vgrsely any
element ¢ € I}, can be characterized by an idempotent ¢, ; of minimal rank

# 0 with Ye,,; = . We have the following result.

py.i

Theorem (Lounesto, 1981). A minimal left ideal of %/, is of the type
Inq = ey Where €, = 3(1 + €)=+ 3(1 + €,) is a primitive idempotent
of 2/,,and e,,, ..., e, are commuting elements of the canonical basis of
&7, such that (e(,‘i)2 =1 (i =1,2,..., k) that generate a group of order
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2%, k = g — r,_,. and r; are the Radon—Hurwitz numbers, defined by the
recurrence formula rg = r; + 4 and

i 01 2 3 45 6 7
. 0 1 22 3 3 3 3

If we have a linear mapping L. %7,, — %/, L{x) = ax,x € #/,,, a
€ %/, then since [, is invariant under left multiplication with arbitrary
elements of %7, ,, we can consider L] Ing :1,, — 1,, and taking into account
the Wedderburn theorem we have the followmg result

g

Theorem. If p + g = n is even or odd with p — ¢ # | (mod 4), then
% g = Ende(l, ) = F(m)

where F = R or C or H, End¢(/, ) is the aigebra of linear transformations
in/, ,over the field F, m = dimg(/, ), and F = eF(m)e, e being the representa-
tion of e,, in F(m).

If p + g =nisodd, withp — g = | (mod 4), then
#,4 = Ende(l,,) = F(m) ® F(m)

and m = dimg(I,,) and e,,%7, e,, = R D RorHDH.
Observe that F is the set

F = (T € Ends(,,), TL, = LT, Ya € %,,)

Periodicity Theorem (Porteous, 1969). For n = p + g = 0 there exist
the following isomorphisms:

gﬂﬁﬂ = g/;1,0 ® (g>/8.0’ (g?/().n+8 = ’g‘/b.n ® %/2)8 (7)
g47+8‘q = g/},‘q ® rg/)gvo, gj/;,‘qﬁ.s = %/jp‘q ® g/o’g

We can find, e.g., in Porteous (1969) and Figueiredo et al. (1990a,b)
tables giving the representations of all algebras %7, , as matrix algebras. For
what follows we need

complex numbers %%, = C
quarternions %%, = H
Pauli algebra %75 = M,(C)
spacetime algebra &7 ; = My(H)
Majorana algebra %7, = M,(R) (8)
Dirac algebra @7, = M4(C)

We also need the following result.
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Proposition. %/,

" pa = gi/;{.ﬁ'l fOI‘p > 1 and %)/;,q = gf;’*‘!_‘ for 9 > 1.

From the above proposition we get the following particular results that
we shall need later:

By =€) = By, =3 )
= CQ® &, &5, = C Q&3 (10}

which means that the Dirac algebra is the complexification of both the
spacetime or the Majorana algebras.

Right Linear Structure for I,, We can give to the ideal I,, = %7, e
(resp. 1,, = e&7,,) a right (resp. left) linear structure over the field F(%7,,
= F(m) or &,, = F(m) ® F(m)). A right linear structure, e.g., consists of

an additive group (which is /,,) and the mapping
IXF->IL 1 - yT
such that the usual axioms of a linear vector space structure are valid, e.g.,
we have! (T = W(TT).
From the above discussion it is clear that the minimal (left or right)
ideals of &, , are representation modules of %7, ,. In order to investigate the
equivalence of these representations we must introduce some groups that are

subsets of &, . As we shall see, this is the key for the definition of algebraic
and Dirac—Hestenes spinors.

2.3. The Groups: 7}, Clifford, Pinor, and Spinor

The set of the invertible elements of %7, , constitutes a non-Abelian
group which we denote by #7},. It acts naturally on %7, as an algebra
homomorphism through its adjoint representation

Ad: &, - Aul#z,,); u— Ad,, with Ad,x) = waw™' (11)
The Clifford-Lipschitz group is the set
I,,=(ue@&%,1Vx e R wxi™' e RPY) (12)
The set I'y, = T',, N &, is called special Clifford-Lipschitz group.

Let N: &, = &/,,, N(x) = (¥x)o ({-) means the scalar part of the

Clifford number). We define further:
The Pinor group Pin(p, q) is the subgroup of I, , such that

Pin(p, q) = {u e T',,IN(u) = =1} (13)
The Spin group Spin(p, g) is the set

YFor #/30. 1 = /3,41 + a3) is a minimal left ideal. In this case it is also possible to give a
left linear structure for this ideal. See Vaz and Rodrigues (1993a) and Figueiredo et al. (1990a).
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Spin(p, q) = {u e I',,INw) = =1} (14)
The Spin,(p, g) group is the set
Spin.(p, ) = {u € I';,IN(uw) = +1} (15

Theorem. Adpinpq: Pin(p, q) — O(p, q) is onto with kernel Z,.
Ad;spinep.y: SPIN(p, g) — SO(p, g) is onto with kernel Z,.

O(p, g) is the pseudoorthogonal group of the vector space R™¥, SO(p,
q) is the special pseudoorthogonal group of R”%. We also denote by SO,(p,
q) the connected component of SO(p, g). Spin.(p, ¢) is connected for all
pairs {p, g) with the exception of Spin, (1, 0) = Spin, (0, 1) = {*1} and
Spin.(1, 1). We have

Pi R
O(p, ) = PP 50 o

7,
_ Spin(p, 9)
~ 2z, SO.(p, 9)
_ Spin.(p. q)
Z,

In the following the group homomorphism between Spin,(p, ¢) and SO.(p,
q) will be denoted

¥: Spin,(p, 9) — SO,(p, q) (16)
We also need the following important result:

Theorem (Lounesto, 1981). For p + g = 5, Spindp, q) = {u €
E i = 1},

P4

Lie Algebra of Spin,(1, 3). It can be shown that for each u € Spin,(1,
3) one has

2
u = *ef, F e AR C &5 7

and F can be chosen in such a way as to have a positive sign in (17) except
in the particular case F? = 0 when u = —e”. From (17) it follows immediately
that the Lie algebra of Spin,(1, 3) is generated by the bivectors F € A’R!?
C %7, 5 through the commutator product.

2.4. Geometrical and Algebraic Equivalence of the Representation
Modules I, , of Simple Clifford Algebras #7,,

Recall that %7, , is a ring. We already said that the minimal lateral ideals

of &, are of the form I, , = &7, e,, (o1 €,/¢7,,), where ¢, is a primitive
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idempotent. Obviously the minimal lateral ideals are modules over the ring

#7,, they are representation modules. According to the discussion of Section
2.1, given two ideals /,, = %/, ¢,, and L,= r//;,q »y they are by definition

isomorphic if there exists a bijection ¢: 1,, — I, , such that

e + U2 = o) + e(b):  @lad) = ae(y)
Va € #,,, Vi, e, (18)
Recalling the Noether—Skolem theorem, which says that all automor-

phisms of a simple algebra are inner automorphisms, we have the follow-
ing result.

Theorem. When #7,, is simple, its automorphisms are given by inner
automorphisms x ~ uxu ' X € €yt € BLE,
We also have the foll owmg result.

Proposition. When €7, , is simple, all its finite-dimensional irreducible
representations are equivalent (i.e., isomorphic) under inner automorphisms.

We quote also the following result.

Theorem (Crumeyrolle, 1991). [
if 1,, = I, ,X for nonzero X € I,

g and I, , are isomorphic if and only

We are thus led to the foliowing definitions:

. Theideals /,, = &, e,, and I, , = &7, ,e,, are said to be geometri-

cally equivalent if, for some u er g

€py = uepu”" (19)

2. I,,and I, are said to be algebraically equivalent if

e!

g = Uep ! 20)

for some u ¢ &/, butu ¢ I', .

It is now time to specialize the above results for 27, ;3 = M,(H) and to
find a relationship between the Dirac algebra %7, = M,(C) and %75 and
their respective minimal ideals.

Let 3y = {Ey, Ey, E,, E;} be an orthogonal basis of R'? C €73, E,E,
+ EVE, = 27, My, = diag(+1, =1, —1, —1). Then, the elements

:%(l + Ey), e' :%(l + E3Ey), e’ :%(1 + E\EyE3) (21)

are easily verified to be primitive idempotents of %7, ;. The minimal left
ideals I = & ze, I' = %/ 5¢’, and I' = %/, ;¢" are right two-dimensional
linear spaces over the quaternion field (e.g., He = eH = ¢%/] ;e). According
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to the definition 2 above, these ideals are algebraically equivalent. For exam-
ple, ¢’ = ueu™', withu = (I + E3) ¢ I'}..

The elements ® e & 33(1 + E;) will be called mother spinors (Lou-
nesto, 1993a,b). We can show (Figueiredo et al., 1990a) that each ® can
be written

D = e + UE Ee + Y EsEge + Yy E Ege = 2 URY (22)

5 = e, 5y = E3E;€, 53 = E3E0€, S§q4 = E[ Eoe (23)

and where the {; are formally complex numbers, i.e., each \; = (a; + b,;E,E))
with ¢, b, € R.

We recall that Pin(1, 3)/Z, = O(l, 3), Spin(1, 3)/Z, == SO(I, 3), Spin,
(1, 3Y/Z, = SO}, 3), and Spin.(i, 3) = SL(2, C) the universal covering
group of £, = SO,(1, 3), the restricted Lorentz group.

In order to determine the relation between &%, ; and & ; we proceed
as follows: let {F,, F,, F,, F5, F;} be an orthogonal basis of #7;, with
—F§=F}=F3=F}=Fi=1F,Fp=—-FsF, A#¥B;A,B=0,1,2,
3, 4). Define the pseudoscalar

i = FoF\F,FsF,,  P=—1, iF,=Fi A=01234
(24)

Define
%M = FMF4 (25)

We can immediately verify that €,%, + €,€, = 2n,,. Taking into account
that &7, 5 = %% ,, we can explicitly exhibit here this isomorphism by consider-
ing the map g: %/,; — %%, generated by the linear extension of the map
gt R - &y, gNE) = €, = F,Fy, where E, (n = 0, 1, 2, 3) is an
orthogonal basis of R'?. Also g(l;,,,) = 1,4, where 1, , and 1, are the
identity elements in %7, ; and %73,. Now consider the primitive idempotent
of g:/]‘:; = ?:4/2-]1

eq = gle) = 3}(1 + &) (26)

and the minimal left ideal I, = &7{,e,,. The elements Zs, € I/, can be
written in an analogous way to ® e %/ ;3(1 + Ey) [equation (22)}, i.e.,

Zgn = 2 Z,'E; (27)
where

Sy = ey, 5, = —€,%€aey, 5y = €3¢€ey, 54 = €,% e
(28)
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and
L = a; + Céz%;bi

and formally complex numbers, g;, b; € R.
Consider now the element fy, € &/,

Sy = enz(l +i€,%y)
= L1 + B)L(1 + i8,8) (29)

with i given by equation (24).
Since fv, %74 \fs, = Cfy, = f5,C it follows that fy, is a primitive idempo-
tent of %7, ;. We can easily show that each @5, e Iy, = 7, f, can be written

\Piozz‘bir‘s llJ,‘EC

fl =f5..ov fl = —%I%Bfﬁov f3 = Cé}CéOf\;m f4 = C5I%Of}:0 (30)

With the methods described in Vaz and Rodrigues (1993a) and Figueiredo
et al. (1990a) we find the following representation in M,(C) for the generators
€, of &4y = &5

l’) O 0 — Uy
%OHZ():(O“ "17>(->Cg>im'li=(o_' 00) (31)

where [, is the unit 2 X 2 matrix and o, (i = 1, 2, 3) are the standard Pauli
matrices. We immediately recognize the y-matrices in (31) as the standard
ones appearing, e.g., in Bjorken and Drell (1964).

The matrix representation of Wy, e Iy, will be denoted by the same
letter without the index, i.e., ¥y, = ¥ e My (C)f, where

=30 + 303 + iy, i= /-1 (32)
We have
Y 0 0 0
b 0 0 0
v = g 0 0 OFf Y € C (33)
v, 0 0 0

Equations (22), (27), and (30) are enough to prove that there are bijections
between the elements of the ideals &5, $(1 + Eg), #/5,3(1 + €,), and %/,
1+ (1l + i8,%,).

We can easily find that the following relation exists between ¥y, e
%0/4-|f50 and ZE() € %)/:ﬁ%(l -+ %0)3
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\p-‘-n = Zﬁu%(l +i€,€y) (34)

Decomposing Zy, into even and odd parts relative to the Z,-graduation of
ey = Iy, = 23, T Zs,, we obtain Z3, = Z5,&,, which clearly shows
that all information of Zs, is contained in Z{,. Then,

Wy, = ZE1(1 + €Ll + i%,6)) (35)

()

Now, if we take into account (Figueiredo er al., 1990a) that % +(

+ 8p) = /3 3(1 + &), where the symbol &7{ " means 27} " = &, =
%50, we see that each Zs, e %/{,3(1 + €;) can be written

Z5, = Usop(l + €o), by, € (BT = &5 (36)
Then putting Z7, = /2, we can write equation (35) as
Wy, = (1 + €31 + i€,8y)
= Zs3(1 +i€,%,) 37

The matrix representations of Zy, and sy, in My(C) (denoted by the
same letter without index) in the spinorial basis given by (30) are

b 0 b~y 00
e W W - w0
Y=ty vt o -] “ e wr oo ©8
I be —Uf 0 0

2.5. Algebraic Spinors for RP4

Let Bs = {34, 3. 3., ...} be the set of all ordered orthonormal bases

for R7, ie., each 2 € By isthe set & = (E), ..., E, E ., ..., E, ).
i==E=LE,==E, =-1LEE =-EE (r#srs
=1,2,...,p + g = n). Any two bases, say, %, % € By, are related by

an element of the group Spin,(p. g) C I[,,. We write

o= uZou!, u e Spin,(p, q) (39)

A primitive idempotent determined in a given basis 2. € By will be denoted
es. Then the idempotents es,, es, es, etc., such that, e.g,,

ex = uesu” ', u € Spin.(p, q) (40)

define ideals /s, [z, I, etc., that are geometrically equivalent according to

the definition given by (19). We have
Is = ulsu™", u e Spin.(p, q) 41
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but since uly, = Iy, equation (41) can also be written

Iy = Iyu™! (42)
Equation (42) defines a new correspondence for the elements of the ideals,
Iy, Is, Is, etc. This suggests the following.

Definition. An algebraic spinor for R is an equivalence class of the
quotient set {/x}/R, where {I<} is the set of all geometrically equivalent
ideals, and ¥y, € I, and ¥y e [5 are equivalent, ¥¢ = Wy (mod R) if
and only if

Yy = Yyu! 43)

Wy will be called the representative of the algebraic spinor in the basis 2,
PBs. Recall that X = uZu~' = L3, u e Spin,(1, 3), L € &1

2.6. What Is a Covariant Dirac Spinor (CDS)?

As we already know, fv, = (1 + €)1 + i€,%,) [equation (29)] is a
primitive idempotent of &7y, = M,(C). If u e Spin, (1, 3) C Spin. (4, 1),
then all ideals /s = Ix u~' are geometrically equivalent to Is,. Since %y =
{€0, €, €1, €3} is a basis for R'* C &7, the meaning of 3, = uSqu~' is
clear. From (30) we can write

Isg 2 ¥s, = 20 and I 3 s = D i (44)
where
fl =f20’ f?_ = _%l%3ﬁ:0s f3 = %3%0f§()’ .ﬂ% = %I%Ofi{)

and

f=fk  h=-%%kK H=%Fk fi=%8uk
Since Wy = s u~!, we get
s = 2 Y, = EA S(u™ Woify = ; e
Then
P = 2 Si(u™ "Wy, (45)

where Sy(u™") are the matrix components of the representation in M (C) of
u~' e Spin,(1, 3). As proved in Vaz and Rodrigues (1993a) and Figueiredo
et al. (1990a), the matrices S(u) correspond to the representation D29 &
DO of SL(2, C) = Spin,(1, 3).
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We remark that al} the elements of the set {5} of the ideals geometrically
equivalent to I, under the action of u € Spin,(1, 3) C Spin,(4, 1) have the
same image I = M,(C)f, where f is given by (32), i.e.,

f=30 + yo)1 + iviya), i=J=1

where y,, p = 0, 1, 2, 3 are the Dirac matrices given by (31).
Then, if

Y 4, — My(C) = End(M,(C)f)
x =y M(C)f - M(O)f (46)

it follows that y(€,) = 'y(‘@u) =Y., Y(fzy) = Y = fforal §,, %u such
that €, = ué,u"" for some u € Spin.(1, 3). Observe that all the information
concerning the orthonormal frames 2, 2, etc., disappear in the matrix repre-
sentation of the ideals /5, 5, . . . in My(C), since all these ideals are mapped
in the same ideal I = M4(C)f.

With the above remark and taking into account equation (45), we are
then led to the following.

Definition. A covariant Dirac spinor (CDS) for R!? is an equivalent
class of triplets (2, S(u), ¥), Z being an orthonormal basis of R'?, S(u)
D120 @ DOV representation of Spin,(1, 3), u € Spiny(l, 3), and ¥ e
M(C)f, and

(Z, S(w), ¥) ~ (2o, S(uo), Wo)
if and only if
¥ = S(u)S™(up) ¥, Huug")
= L3, L e ¥, u € Spin,(1, 3) “7n

The pair (X, S(u)) is called a spinorial frame. Observe that the CDS just
defined depends on the choice of the original spinorial frame (2, 4g) and,
obviously, to different possible choices there correspond isomorphic ideals
in M,(C). For simplicity we can fix uy = 1, S(up) = L.

The definition of CDS just given agrees with that given by Choquet-
Bruhat (1968) except for the irrelevant fact that Choquet-Bruhat uses as the
space of representatives of a CDS the complex four-dimensional vector space
C* instead of I = M,(C)f. We see that Choquet-Bruhat’s definition is well
justified from the point of view of the theory of algebraic spinors pre-
sented above.
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2.7. Algebraic Dirac Spinors (ADS) and Dirac—Hestenes Spinors
(DHS)

We saw in Section 2.4 that there is bijection between §s, € 5[ =
@\ and Vs, € Is, = &/ fs,, namely [equation (37)]

‘I,E() = lb?.()%(l + %O)—;’(l + ic(glc(gz)

Then, as we already said, all information contained in ¥y, (which is the
representative in the basis X of an algebraic spinor for R'?) is also contained
in Yg, € 4 = &5 We are then lead to the following.

Definition. Consider the quotient set {/<}/R., where {Is} is the set of
all geometrically equivalent minimal left ideals of %7 ; generated by es, =
11 + Ep), 3o = (Eo, Ey, Ey, Ey) [ie, K5, Is € {Is}, then Iz = ulsu™' =
Isu™' for some u e Spin,(1, 3)]. An algebraic Dirac spinor (ADS) is an
element of {I5}/%R. Then, if &3 e I;, $s e I, then s = Pg(mod R) if
and only if ®s = Psu~!, for some u e Spin,(1, 3).

We remark that {see equation (36)]

By = Pses, Py = bsex, U3, Y5 € &5
and since es = uesu”' for some u € Spin,(1, 3) we get’

bs = su! (48)

Now, we quoted in Section 2.3 that for p + ¢ = 5, Spin,(p, q) = {u €
@y \uid = 1}. Then for all ¥s e &5 such that Ysis # O we obtain
immediately the polar form

P = p'/2ePESIRs (49)

where p € R*, B € R, Rs € Spin,(l, 3), Es = EyE, E, E;. With the above
remark in mind we present the following.

Definition. A Dirac—Hestenes spinor (DHS) is an equivalence class of
triplets (2, u, Ys), where 3 is an oriented orthonormal basis of R'? C %7, s,
u e Spin,(1, 3), and Ys € F73). We say that (X, u, Ps) ~ (Zq, g, Ps,) if
and only if Y5 = Ysug'u, Huug') = L, % = L3 (= u™'ugZoug 'u), u, ug
e Spin,(1, 3), L € &'.. Here uq is arbitrary but fixed. A DHS determines
a set of vectors X, € R'3 (n =0, 1, 2, 3) by a given representative Yz of
the DHS in the basis X by

b 2o RY BBy =X, 2= (E,ELEnE)  (50)
We give yet another equivalent definition of a DHS:

3Lounesto (1993, 1994) calls 2 the mother of all the real spinors.
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Definition. A Dirac—Hestenes spinor is an element of the quotient set
&/V3/R such that given the basis 2, 2 of R'? C &5, §s € &3, Us €
%715, then Y5 ~ Ps(mod R) if and only if Ys = Ysu™ ', 2 = L3 = udu™',
H(u) = L, u € Spin,(1, 3), L € &i.

With the canonical form of a DHS given by equation (49) some features
of the hidden geometrical nature of the Dirac spinors defined above comes
to light: equation (49) says that when Ys{is # 0 the Dirac—Hestenes spinor
Uy is equivalent to a Lorentz rotation followed by a dilation and a duality
mixing given by the term exp(BEs/2), where B3 is the so-called Yvon-
Takabayasi angle (Yvon, 1940; Takabayasi, 1957) and the justification for
the name duality rotation can be found in Vaz and Rodrigues (1993a). We
emphasize that the definition of the Dirac—Hestenes spinors given above is
new. In the past objects ¥ e %/ satisfying yX¢ = Yfor X, ¥ € R'* C
%71 have been called operator spinors (see, e.g., Hestenes and Sobczyk
(1984), Lounesto (1993a,b). DHS have been used as the departure point of
many interesting results (e.g., Vaz and Rodrigues, 1993a, 1994; Pavsic et al.,
1993; Rodrigues et al., 1993a).

2.8. Fierz Identities

The formulation of the Fierz (1937) identities using the CDS ¥ e C*
is well known (Crawford, 1985). Here we present the identities for ¥y, e
Is, = (C @ #7,3)fs, and for the DHS {5, € & (Lounesto, 1993, 1994).
Let then ¥ e C* be a representative of a CDS for R'? associated to the
basis %y = (E,, E, E,, E;} of R'? C &7, ;. Then ¥, Wy, determine the
following so-called bilinear covariants:

g = ‘I’T'Yo‘y = 4(‘I’§0‘on)o
ju = ‘IIT'YO‘Y;L\I’ = 4<‘P§QEHWEO>O
S;.w = \Pt'YOi'va‘y = 4<q,§gi£pv\yio)0

K, = Vypivois¥ = K& iEynE, Wsyho

B

o= —VlyeyeuV = -4(\P§0E0,23W20)0 (5D

where T means Hermitian conjugation and * complex conjugation. We remark
that the reversion in %7, ; corresponds to the reversion plus complex conjuga-
tion in C ® %)/I.J'

All the bilinear covariants are real and have physical meaning in the
Dirac theory of the electron, but its geometrical nature appears clearly when
these bilinear covariants are formulated with the aid of the DHS.
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Introducing the Hodge dual of a Clifford number X e % 3 by
*X = XEs, E5 = EOE|E2E3 (52)

we find that the bilinear covariants given by (51) become, in terms of Yy,
the representative of a DHS in the orthonormal basis 2y = {E, E,, E,, E3}
of R} C % ;,

Ysgls, = 0 + %0,  J = J,E*

sy Eolisy = J, S =18, E*EY

lIJZoEl EZ‘LZ = Sv K= K'LEH (53)
‘onES'LEo = K? E" = "]ME;L

Ps, EoEsls, = *S, n* = diag(l, —1I, —1, —1)

Vs, EoE\ Exlbs, = *K
The Fierz identities are

S =0 + o J-K =0, J? = -K?, JAK=—(0 + *xa)$

(54)
S-J = uk, S'K=w/
(*S)-J = —oKk, (*S)-K = —aJ (55)
S-S=w -0 (*S)-S = —20w
JS = —(w + *0)K, KS = —(w + *g)J
SJ = —(w — *0)K, SK = —(w — *a)J (56)

§? = 0?2 — 0 — 20(*w)
§7' = —S(o — *0)/(0? + w?) = KSK/(a? + w?)?

The proof of these identities using the DHS is almost a triviality.

The importance of the bilinear covariants is due to the fact that we can
recover from them the CDS W5, € M,(C)f or all other kinds of Dirac spinors
defined above through an algorithm due to Crawford (see also Lounesto,
1993, 1994). Indeed, representing the images of the bilinear covariants in
%3 and 875, C %4, under the mapping g [equation (25)] by the same
letter, we have that the following result holds true: let

Zs, = (0 + J + iS + i(*K) + *w) € C ® @, (57)
where 0, J, §, K, w are the bilinear covariants of ¥y, = (C ® %7 3)fs,. Take

Nz, € (C & & 3)f5, such that 7%, W5, # 0. Then Wy, and Zy ny, differ by
a complex factor. We have
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Yy, = E_ing(my_o (58)

4
NT]V

<«

NT\S(, = (<ﬁ§(,zﬁ(,ﬂ2()>o)]/2» € (ﬁ*‘II)O (59)

Choosing ms, = fx, we obtain

Ny, = 1o + J-Ey — SH(E\Ey) — K E3]'2, e~ = g /11 (60)
where , is the first component of Wy, in the spinorial basis {s;}.

It is easier to recuperate the CDS from its bilinear covariants if we use

the DHS 5, € @71 = (&77,)*, since putting

{lbi()(l + EO)‘LE() =P

- 61
Us (1 + EE, Exlis, = O 1)

U1 + E)(1 + iE Enls, = (P + iQ) (62)
results in
P=c+J+ w Q=8+=*K (63)
and
ZSO=P1(I +iQ)~ (64)
2 20

valid for o # 0, w # 0 [for other cases see Lounesto (1994)]. From the
above results it follows that ¥y, can be easily determined from its bilinear
covariant except for a “complex” E,E, phase factor.

3. THE CLIFFORD BUNDLE OF SPACETIME AND ITS
IRREDUCIBLE MODULE REPRESENTATIONS

3.1. The Clifford Bundle of Spacetime

Let M be a four-dimensional, real, connected, paracompact manifold.
Let TM [T*M] be the tangent [cotangent] bundle of M.

Definition. A Lorentzian manifold is a pair (M, g), where g € sec T*M
X T*M is a Lorentzian metric of signature (1, 3), ie, forallx e M, T M
= T*¥M = R"? where R'? is the vector Minkowski space.

Definition. A spacetime M is a triple (M, g, V), where (M, g) is a
time-oriented and spacetime-oriented Lorentzian manifold and V is a linear
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connection for M such that Vg = 0. If in addition T(V) = 0 and R(V) # 0,
where T and R are respectively the torsion and curvature tensors, then M is
said to be a Lorentzian spacetime. When Vg = 0, T(V) = 0, R(V) = 0, M
is called Minkowski spacetime and will be denoted by M, When Vg = 0, T(V)
# 0 and R(V) = 0 or R(V) # 0, A is said to be a Riemann~Cartan spacetime.

In what follows Pso,1.3,(/) denotes the principal bundles of oriented
Lorentz tetrads (Rodrigues and Figueiredo, 1990; Choquet-Bruhat et al,
1982). By g~! we denote the “metric” of the cotangent bundle.

It is well known that the natural operations on metric vector spaces,
such as, e.g., direct sum, tensor product, exterior power, etc., carry over
canonically to vector bundles with metrics. Take, e.g., the cotangent bundle
T*M. If w: T*M — M is the canonical projection, then in each fiber 7~ '(x)
= T*M = R'? the “metric” g~' can be used to construct a Clifford algebra
& (T¥M) = &7} ;. We have the following.

Definition. The Clifford bundle of spacetime M is the bundle of algebras
(M) = U BATEM) (65)

xeM
As is well known, %7(M) is the quotient bundle

™
J(a)

where ™™ = @2 T%(M) and TO(M) is the space of r-covariant tensor
fields, and J(M) 1s the bundie of ideals whose fibers at x € M are the two
side ideals in TM generated by the elements of the forma ® b + b ® a —
2" Ya, b) for a, b € T*M.

Let . % (M) — M be the canonical projection of (M) and let {U,)
be an open covering of M. From the definition of a fiber bundle (Lichnerowicz,
1984) we know that there is a trivgalizing mapping ¢a: 7, '(Uy) — U, X
&%) 3 of the form @a(p) = (T(p), ¢(p). If Usg = Uy N Ug and x € U,
p € . '(x), then

(M) =

(66)

A A
(po:(p) = faﬁ(-’:)‘PB(p) (67)

for fog(x) € Aut(% 3), where fo5: U,g — Aut(%7, ;) are the transition map-
pings of #7(M). We know that every automorphism of %7{ ; is inner and it
follows that

A A
fa@X)0p(P) = Zap(0)Pp(P)gup() ™ (68)

for some gqalx) € %773, the group of invertible elements of %, ;. We can
write equivalently instead of (68)
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A
Fup9a(P) = @a(aagpazd) (69)

for some invertible element a,5 € F(T¥M).

Now, the group SO, (1, 3) has, as we know (Section 2), a natural extension
in the Clifford algebra #7} ;. Indeed we know that %77 acts naturally on
%7 ; as an algebra automorphism through its adjoint representation Ad: u ~
Ad,, Ad,(a) = uau™'. Also, Ad| spin (1.3 = O defines a group homeomorphism
o: Spin.(1, 3) - SO.(1, 3) which is onto with kernel Z,. It is clear, since Ad
= identity, that Ad: Spin,(1, 3) » Aut(%7, ;) descends to a representation of
SO.,(1, 3). Letus call Ad’ this representation, i.e., Ad": SO,(1, 3) = Aut(%7] 3).
Then we can write Adg,a = Ad,a = uau™".

From this it is clear that the structure group of the Clifford bundle %7 (M)
is reducible from Aut(%7) ;) to SO.(1, 3). This follows immediately from the
existence of the Lorentzian structure (M, g) and the fact that (M) is the
exterior bundle where the fibers are equipped with the Clifford product. Thus
the transition maps of the principal bundle of oriented Lorentz tetrads
Pso, (1.3(M) can be (through Ad’) taken as transition maps for the Clifford
bundle. We then have the result {Blaine Lawson and Michelson, 1989)

&7 (M) = Pso, (M) Xag F13 (70)

3.2. Spinor Bundles

Definition. A spinor structure for /M consists of a principal fiber bundle
7,0 Pspin,1.3(M) = M with group SL(2, C) = Spin,(l, 3) and a map

5t Pgpin,a3(M) = Pso,1,3(M)

satisfying the following conditions:

1. w(s(p)) = wp) Vp € Pspin,anM)
2. s(pu) = s(p)H(u) Vp € Pgpin.13(M) and F: SL(2, C) — SOL(1, 3).

Now, in Section 2 we learned that the minimal left (right) ideals of 7, ,
are irreducible left (right) module representations of ), , and we defined
covariant and algebraic Dirac spinors as elements of quotient sets of the type
{Is}/R (Sections 2.6 and 2.7) in appropriate Clifford algebras. We defined
also in Section 2 the DHS. We are now interested in defining algebraic Dirac
spinor fields (ADSF) and also Dirac—Hestenes spinor fields (DHSF).

So, in the spirit of Section 2, the following question naturally arises: Is
it possible to find a vector bundle m: S(/) — M with the property that each
fiber over x € M is an irreducible module over #/(T*M)?

The answer to the above question is in general no. Indeed it is well
known (Milnor, 1963) that the necessary and sufficient condition for S(M)
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to exist is that the spinor structure bundle Pgyin. 1 .3(M) exist, which implies
the vanishing of the second Stiefel-Whitney class of M, i.e., w,(M) = 0.
For a spacetime M this is equivalent, as shown originally by Geroch (1968,
1970), to Pso, (1.3 (M) being a trivial bundle, i.e., to its admitting a global
section. When Pgpin, (13(M) exists we say that M is a spin manifold.

Definition. A real spinor bundle for M is the vector bundle

S(JM.) = PSpin+(l,3)(JM~) Xp' M (?I)

where M is a left (right) module for @] ; and where p.: Pggin, 13, — SOL(1,
3) is a representation given by left (right) multiplication by elements of
Spin,(1, 3).

Definition. A complex spinor bundle for A is the vector bundle
S(M) = Pgpin 1. 3(M) X, M, (72)

where M is a complex left (right) module for C ® %7, = %7, = M{C),
and where W Pspin, 1.3 —> SO.(1, 3) is a representation given by left (right)
multiplication by elements of Spin_ (1, 3).

Taking, e.g., M, = C* and . the D'V2% @ D2 representation of
Spin,(1, 3) in End(C*), we recognize immediately the usual definition of the
covariant spinor bundle of M, as given, e.g., in Choquet-Bruhat (1968).

Since, besides being right (left) linear spaces over H, the left (right)
ideals of #7) ; are representation modules of %7) ;, we have the following.

Definition. I(M) is a real spinor bundle for M such that M in equation
(71) is I, a minimal left (right) ideal of %7 5.

In what follows we fix the ideal taking [ = &7, ,5(1 + Eg) = %7, se. If
;. (M) —> M is the canonical projection and {U,} is an open covering of
M, we know from the definition of a fiber bundle that there is a trivializing

A
mapping Xo(q) = (TAg), Xa(@). If Usg = Uy N Ug and x € Uyg, q €
7 (Uy), then

A A
Xa(q) = 8ap(¥)Xp(q) (73)
for the transition maps in Spin,(1, 3).® Equivalently,
A A
Xalq) = Xpl@upq) (74)

for some a,pg € @7(T¥M). Thus, for the transition maps to be in Spin.(1, 3)

®We start with transition maps in €7}, and then by the bundle reduction process we end with
Spin (1, 3).
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it is equivalent that the right action of He = eH = ¢%7] ;e be defined in the
bundle, since for g € 7y !(x), x € U,, and a € H we define ga as the unique
element of 7, '(x) such that

A A
X«(qa) = Xo(q)a (75)

Naturally, for the validity of (75) to make sense it is necessary that

A A
Lol (X)) = (Zap()Xo(g))a (76)

and (76) implies that the transition maps are H-linear.’
Let f.p: Usg — Aut(#7) 3) be the transition functions for #7(AM). On the
intersection U, N Ug N U, it must hold that

Joploy = fay an

We say that a set of lifts of the transition functions of #7(M) is a set
of elements in %73, { gup}, such that if

Ad: g/)’;3 - Aut(g)//;':;)
Ad@)x = uXu™t, VX e &3

then Ad,; = fop in all intersections.

Using the theory of the Céch cohomology (Benn and Tucker, 1988), it
can be shown that any set of lifts can be used to define a characteristic class
(& (M) e H¥M, H*), the second Céch cohomology group with values
in H*, the space of all nonzero H-valued germs of functions in M.

We say that we can coherently lift the transition maps €(M) to a set
{g.p} € @75 if in the intersection U, N U N U,, Va, B, vy, we have

gaBgBy = ga'y (78)

This implies that w(87(M)) = id,y), i.e., M is Céch trivial and the coherent
lifts can be classified by an element of the first Céch cohomology group
HY(M, H*). Benn and Tucker (1988) proved the following important result:

Theorem. There exists a bundle of irreducible representation modules
for & (M) if and only if the transition maps of &7(Al) can be coherently
lifted from Aut(%7, ;) to %77 ;.

They showed also by defining the concept of equivalence classes of
coherent lifts that such classes are in one-to-one correspondence with the
equivalence classes of bundles of irreducible representation modules of

7Without the H-linear structure there exist more general bundles of irreducible modules for
%z(JM) (Benn and Tucker, 1988).
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&/ (M), I(M) and I'(M) being equivalent if there is a bundle isomorphism p:
(M) — I'(M) such that

pla.g) = ap(q), Va, € €/(T*M), Vg e n;'(x)

By defining that a spin structure for M is an equivalence class of bundles
of irreducible representation modules for #7(M), represented by /(.M), Benn
and Tucker showed that this agrees with the usual conditions for M to be a
spin manifold.

Now, recalling the definition of a vector bundle, we see that the prescrip-
tion for the construction of /(M) is the following. Let {U,} be an open
covering of M with f,g being the transition functions for (M) and let { g.s}
be a coherent lift, which is then used to quotient the set U, U, X I, where,
e.g., | = &) 131 + Ep) to form the bundle U, U, X I/R, where R is the
equivalence relation defined as follows. For each x € U, we choose a minimal
left ideal 1$,, in E7(T#M) by requiring®

A
PallSn) = 1 (719)

As before, we introduce a.z € #7(T¥M) such that
a
‘PB(aaﬂ) = gaB(x) (80)

A a
Then for all X e @A(TIM), ¢o(X) = @plasgXasg). So, if X e 1%, then
apXagg and also Xagg e 1§, Putting Y, = U, X I§,Y = U, Y,, we define
the equivalence relation R on Y by (U,, x, Ys) = (Ug, x, P3) if and only if

Us = Psagg (81)

Then, /(M) = Y/AR is a bundle which is an irreducible module representa-
tion of €(M). We see that equation (81) captures nicely for a,5 € Spin,(1,
3) C %775 our discussion of ADS of Section 2. We then have the following.

Definition. An algebraic Dirac spinor field (ADSF) is a section of /(M)
with a5 € Spin,(1, 3) C %775 in equation (81).

From the above results we see that ADSF are equivalence classes of
sections of #7(M) and it follows that ADSF can locally be represented by a
sum of inhomogeneous differential forms that lie in a minimal left ideal of
the Clifford algebra %7, ; at each spacetime point.

In Section 2 we saw that besides the ideal / = %7} ,2(1 + Ej), other
ideals exist for %7, ; that are only algebraically equivalent to this one. In
order to capture all possibilities, we recall that 27 ; can be considered as a

8Recall the notation of Section 2, where ¥ is an orthonormal frame, etc.
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module over itself by left (or right) multiplication by itself. We are thus led
to the following.

Definition. The real spin-Clifford bundle of M is the vector bundle
B spin+(1.3(M) = Pspin, . m(M) X, &7, 5 (82)

It is a “principal #7); bundle,” i.e., it admits a free action of 7|5 on
the right (Rodrigues and Oliveira, 1990; Blaine Lawson and Michelson,
1989). There is a natural embedding Pgpin, (1,3 (M) T & 'spin.,(1,3)(M) which
comes from the embedding Spin,(1l, 3) C #;. Hence every real spinor
bundle for M can be captured from & spin, (1 3)(M). Espin, 1.3,(M) is different
from #¥(M). Their relation can be discovered by remembering that the
representation

Ad: Spin,(l, 3) — Au(% ), Ad X = uXu™!, u € Spin,(l, 3)
is such that Ad_, = identity and so Ad descends to a representation Ad’ of

SO, (1, 3), which we considered above. It follows that when Pgpin, (1.3(M)
exists

& (M) = Pspin. . 3(M) Xag € 3 (83)

From this it is easy to prove that indeed S(/) is a bundie of modules over
the bundle of algebras Z7(M).

We end this section by defining the local Clifford product of X & sec
&7 (M) by a section of I(M) or B spin,13(M). If @ & I(M), we put Xo = b
e sec I(M), and the meaning of (83) is that

b)) = X(p(x), VxeM (84)

where X(x)¢(x) is the Clifford product of the Clifford numbers X(x), ¢(x)
© gf’l_}
Analogously, if § € &Zspin, (1,3(M), then

X = & € & spin,1.3(M) (85)

and the meaning of equation (84) is the same as in equation (83).
With the above definition we can “identify” from the algebraic point of
view sections of #7(M) with sections of I(M) or Espin, 1.3(M).

3.3. Dirac~Hestenes Spinor Fields (DHSF)

The main conclusion of Section 3.2 is that a given ADSF which is a
section of I(M) can locally be represented by a sum of inhomogeneous
differential forms in &#(0) that lies in a minimal left ideal of the Clifford
algebra %7, ; at each point x € M. Our objective here is to define a DHSF
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on M. In order to achieve our goal, we need to find a vector bundle such
that a DHSF is an appropriate section.

In Section 2.7 we defined a DHS as an element of the quotient set
% TJ/R, where R is the equivalence relation given by equation (50). We
immediately realize that if it is possible to define globally on M the equiva-
lence relation R, then a DHSF can be defined as an even section of the
quotient bundle &7(M)/R. '

More precisely, if & = {y*} (a =0, 1,2,3)and 2 = {¥°}, v, ¥* €
sec ANT*M) C &/(M) are such that ¥* = Ry‘R™!, where R € sec &z*(M)
is such that R(x) e Spin,(l, 3) for all x € M, we say that X ~ X. Then
a DHSF is an equivalence class of even sections of (M) such that its
representatives Yy and s in the basis 2 and % define a set of 1-forms X*
e sec AY(T*M) C sec 7 (M) by

Xe(x) = Us()Y P (x) = Ps(x)y*(0)Ps(x) (86)
i.e., Y5 and Uz are equivalent if and only if
bs = YR (87)

Observe that for = ~ 3 to be globally defined it is necessary that the 1-
forms {v“} and {4} are globally defined. It follows that Psg,( 3,(/M), the
principal bundle of orthonormal frames, must have a global section, i.e., it
must be trivial. This conclusion follows directly from our definitions, and it
is a necessary condition for the existence of a DHSF. It is obvious that the
condition is also sufficient. This suggests the following.

Definition. A spacetime M admits a spinor structure if and only if it is
possible to define a global DHSF on it.

Then, we have the following result.

Theorem. Let M be a spacetime (dim M = 4). Then the necessary and
sufficient condition for M to admit a spinor structure is that Psg, 3,(AM)
admits a global section.

In Section 3.1 we defined the spinor structure as the principal bundle
Pspin,3(1) and a theorem with the same statement as the above one is
known in the literature as Geroch’s (1968) theorem. Geroch’s theorem deals
with the existence of covariant spinor fields on M, but since we already
proved, e.g., that covariant Dirac spinors are equivalent to DHS, our theorem
and Geroch’s are equivalent. This can be seen more clearly once we verify that

Gr(M)
R

where & spin.. (1.3 (M) = Pgpin,1.3) X 2, 3 is the spin-Clifford bundle defined

= & spin (1 1(M) (88)
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in Section 3.1. To see this, recall that a DHSF determines through equation
(84) a set of l-forms X¢ e sec AN(T*M) C sec 7(M). Under an active
transformation,

X¢ = X% = RX“R™!, R{x) € Spin, (1, 3), VxeM (89)

we obtain the active transformation of a DHSF, which in the Z-frame is
given by’

Ps = Px = Ry (90)
From equation (87) it follows that the action of Spin,(1, 3) on the typical
fiber %73 of 7(M)/R must be through left multiplication, i.e., given u =
Spin.(1, 3) and X e %7, and taking into account that %7 ; is a module
over itself, we can define [, € End(%7] 3) by [(X) = ux, VX € & ;. In this
way we have a representation /: Spin,(1, 3) — End(%7, 3), u — [,. Then we
can write

# (M)
R

= PSpin+(l‘3)(JM) X{ g/hg,

3.4. A Comment on Amorphous Spinor Fields

Crumeyrolle (1991) gives the name of amorphous spinors fields to ideal
sections of the Clifford bundle Z/(M). Thus an amorphous spinor field ¢ is
a section of &(M) such that de = ¢, with ¢ being an idempotent section
of €7 (M).

It is clear from our discussion of the Fierz identities that are fundamental
for the physical interpretation of Dirac theory that these fields cannot be used
in a physical theory. The same holds true for the so-called Dirac—Kahler
fields (Kihler, 1962; Graf, 1978; Becher, 1981; Hehl and Datta, 1971), which
are sections of &/ (M). These fields do not have the appropriate transformation
law under a Lorentz rotation of the local tetrad field. In particular, the
Dirac—Hestenes equation written for amorphous fields is not covariant (see
Section 6). We think that with our definitions of algebraic and DH spinor
fields physicists can safely use our formalism, which is not only nice, but
extremely powerful.

4., THE COVARIANT DERIVATIVE OF CLIFFORD AND
DIRAC-HESTENES SPINOR FIELDS

In what follows, as in Section 3, M. = (M, V, g) will denote a general
Riemann—Cartan spacetime. Since /(M) = TM/J(M), it is clear that any

9Observe also that in the S we have for the representative of the actively transformed DHSF
the relation §& = RYsR™".
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linear connection defined in TM such that Vg = 0 passes to the quotient M/
J(M) and thus defines an algebra bundle connection (Crumeyrolle, 1991). In
this way, the covariant derivative of a Clifford field A e sec €¥(M) is
completely determined.

Although the theory of connections in a principal fiber bundle and on
its associate vector bundles is well described in many textbooks, we recall
below the main definitions concerning this theory. A full understanding of
the various equivalent definitions of a connection is necessary in order to
deduce a nice formula that permits us to calculate in a simple way the
covariant derivative of Clifford fields and of Dirac—Hestenes spinor fields
{Section 4.3). Our simple formula arises due to the fact that the Clifford
algebra #7) 3, the typical fiber of 7(M), is an associative algebra.

4.1. Parallel Transport and Connections in Principal and
Associated Bundles

To define the concept of a connection on a PFB (P, M, w, G) over a
four-dimensional manifold M (dim G = n), we first recall that the total space
P of that PFB is itself an (n + 4)-dimensional manifold and each one of its
fibers w'(x), x € M, is an n-dimensional submanifold of P. The tangent
space T,P, p € w™'(x), is an (n + 4)-dimensional linear space and the tangent
space T,m~'(x) of the fiber over x, at the same point p € 7~ '(x), is an n-
dimensional linear subspace of T,P. It is called a vertical subspace of T,P
and is denoted by V,P.

A connection is a mathematical object that governs the parallel transport
of frames along smooth paths in the base manifold M. Such a transport takes
place in P, along directions specified by vectors in T,P, which does not lie
within the vertical space V,P. Since the tangent vectors to the paths on the
base manifold passing through a given point x € M span the entire tangent
space T M, the corresponding vectors X e T,P (in whose direction parallel
transport can generally take place in P) span a four-dimensional linear sub-
space of T,P called a horizontal space of T,P and denoted by H,P. The
mathematical concept of a connection is given formally by the following.

Definition. A connection on a PFB (P, M, w, G) is a field of vector
spaces H,P C T,P such that:

1w HP — T.M, x = w(p), is an isomorphism.
2. H,P depends differentially on p.
3. Hp,p = Ry(H,).

The elements of H,P are called horizontal vectors and the elements of
T,,Tr"(x) = V,P are called vertical vectors. In view of the fact that m: P —
M is a smooth map of the entire manifold P onto the base manifold M, we



Dirac-Hestenes Spinor Fields on RC Manifolds 1877

have that 7' = w,: TP — TM is a globally defined map from the entire
tangent bundie TP (over the bundle space P) onto the tangent bundle TM.
If x = w(p), then due to the fact that x = mw(p(#)) for any curve in P
such that p(f) € 7~ '(x) and p(0) = 0, we conclude that w' maps all vertical
vectors into the zero vector in T, M, that is, w'(V,P) = 0, and we have

T,P=HPSOVP peP
so that every X e T,P can be written
X = Xh + va Xh (S H,,P, Xv 1S5 VPP

Therefore, if X € T,P, we get w'(X) = w'(Xy) = X € T,M. Then X, is
called the horizontal lift of X e T, M. An equivalent definition for a connection
on P is given by the following.

Definition. A connection on the principal fiber bundle (P, M, w, G) is
a mapping I',: T\M — T,P, x = m(p), such that:

1. T, is linear.

2. @' o, = Idru, where Idy , is the identity mappmg in T M, and
7' is the differential of the canonical projection mapping w: P — M.

3. The mapping p — [, is differentiable.

4, FRg,, =RT,. g €@, and R, being the right translation in (P, w, M, G).

Definition. Let C: R D [ — M, t = C(1), with xo, = C(0) € M, be a
curve in M and let p, € P be such that w(py) = xo. The parallel transport
of p, along C is given by the curve C: R D /7 — P, =~ C(1), defined by

d ooy -1 4
zi—tC(t)- r, o c@®

with C(0) = py, C(1) = py, w(pp = x = C(0).

We now need to know more about the nature of the vertical space V,P.
For this, let X € T.G = & be an element of the Lie algebra of G and let f:
G D U, — R, where U, is some neighborhood of the identity element of (.
The vector X can be viewed as the tangent to the curve produced by the
exponential map

~ d -
XN = (—i;f(exp(Xr)) li=o

Then for every u € P we can attach to each X e 7,G a unique element of
V,P as follows: Let &: P — R be given by

X,(p)(F) = % F(p expRN) ! 1—o
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By this construction we have attached to each X e 7,G a unique global
section of TP, called the fundamental field corresponding to this element.
We then have the canonical isomorphism

XpmeX XpeVP XeTG
and we have
VP =0
It follows that another equivalent definition for a connection is as follows.

Definition. A connection on (P, M, w, G) is a 1-form field w on P with
values in the Lie algebra (8 such that, for each p € P, we have:

I eoyX,) = XX, e V,P, and X e & are related by the canonical
isomorphism.

2. ®, depends differentially on p.

3. @, (R X) = (Ad,-1w,)(X).

It follows that if {9} is a basis of (% and {0’} is a basis of T}P, we
can write w as

W, = 0" ®%, = 0 ©F, (91)

where w? are |-forms on P.
The horizontal spaces H,P can then be defined by

H,P = ker(w,)

and we can verify that this is equivalent to the definition of H,P given in
the first definition of a connection.

Now, for a given connection w, we can associate with each differentiable
local section of w™{(U/) C P, U C M, a 1-form with values in (3. Indeed, let

fi MDU—->="(U)CP, wof=1dy

be a local section of P. We define the 1-form f*w on U with values in &
by the pullback of w by £ If X € T M, x € U,

(FF@)(X) = o (f'X)
Conversely, we have the following result.

Theorem. Given o € TM @ (& and a differentiable section of 7w~ '(1),
U C M, there exists one and only one connection w on 7 '(U) such that
[fw = w.

It is important to keep in mind also the following result:
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Theorem. On each principal fiber bundle with paracompact base manifold
there exist infinitely many connections.

As is well known, each local section f determines a local trivialization
O 7' U)->UXG

of m: P — M by setting ®~'(x, g) = f(x)g. Conversely, ® determines f, since
f(x) = ®7(x, e), where e is the identity of G. We shall also need the
following result.

Proposition. Let there be given a local trivialization (U, ®), ®: = (U)
-> U X G, and let f: M D U — P be the local section associated to it. Then
the connection form can be written

(P o), = g 'dg + g7 lg (92)
where w = f*w € TU ® &. We usually write, by abuse of notation, ®~'*w
= . (The proof of this proposition is trivial.)

We can now determine the nature of span(H,P). Using local coordinates
(x)) for U C M and g for U, € g,'° we can write

o = g;'dg; + g7 wg

o=old*=0"'®Y, eTURRH
and
(%4, G5] = fancbc

with f,gc being the structure constants of the Lie algebra (& of the group G.
Recall now that dim H,P = 4. Let its basis be

9 9
dxt i ag,]
w=201,23andij=1,...,n = dim G. Since HP = ker(w,), we
obtain, by writing
i) i)
X == Ll R + d i
n=P <8x" Y ag,-,)
that
d

A
wij wp.(gAikgkl

where 4, are the matrix elements of §,.

'0Eor simplicity, G is supposed here to be a matrix group. The g; are then the elements of the
matrix representing the element g € G.
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Consider now the vector bundle £ = P X, F associated to the PFB
(P, M, w, G) through the linear representation p of G in the vector space F.
Consider the logal trivializaAtion Qo T WUy = Uy X Gof (P, M, 7, G,
@l p) = (T(P), 9o p)) With @, (p): ™ '(x) = G, x € U, € M. Also, consider
the local trivialization x,: 7~ '(U,) = U, X F of E, wherem: E — M is the

canonical projection. We have x,(y) = (7(Y), Xo(¥)) With o (¥): 7 '(x) >
F. Then, for each x € U,g = U, N Ug we must have

A A . A A
XB,r e Xl;,r = p(‘PBJ ° "Pu_.l-)
We then have the following.

Definition. The parallel transport of vy € E, m(vg) = xq, along the curve
C:RD 15 M, xy = C(0), from xp to x = C(2) is the element vy € E such that:

L. mw(y) = x
A

A A A
XQ‘J(VH) = p(‘?a,.r(pﬂ) ¢ ‘*P{x,r()(pO))('PB.m(V())'

Definition. Let X be a vector at x; € M tangent to the curve C: t —
C(t) on M, x, = C(0). The covanant derivative of X e sec E in the direction
of Vat xq is (VyX)y, € sec E such that

o1
(VyX)(xp) = (VyX),, = I,T(} N XP, — Xo) (93)

where Xfﬂ, is the “vector” X, = X(x(1)) of a section X e sec E parallel
transported along C from x(f) to x,, the unique requirement on C being (d/
anCit,_g = V.

In the local trivialization (U, x.) of £ we have

A A
Xa(Xﬁz) = p(g()g:_l)Xc:.r(l)(Xs) (94)

From this last definition it is trivial to calculate the covariant derivative
of A € sec & (M) in the direction of V. Indeed, since a spin manifold for M
is (Section 3)

& (M) = Pso,13) Xad €13 = Pspin,1.3) Xad 13

8o, &' € Spin,(1, 3), and p is the adjoint representation of Spin,(l, 3) in
7\ 3, we can verify (just take into account that our bundle is trivial and put
8o = | for simplicity) that we can write

Al =g 'Ag. & = glx(t)) e Spingl, 3) (95)
Then,
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.
(VyA)(xo) = lmg n (& 'Aig — Ao) (96)

Now, as we observed in Section 2, each g € Spin, (1, 3) is of the form
+ef where F e sec A(T*M) C sec €7(M), and F can be chosen in such
a way as to have a positive sign in this expression, except in the particular

case where F? = 0 and R = —e’. We then write!'

g, = e o7
and

w=-2g/g "= (98)

Using equation (98) in equation (97) gives

dt 2 ©9

(VyA) (o) = {—‘f At A,]}
=0

Now let (x*) be a coordinate chart for U C M, e, = hd,,a =0, 1, 2,

3, an orthonormal basis for TU C TM."? Let v¢ € sec(T*M) C sec & (M)

be the dual basis of {¢,}] = B. Let £ = {¥*} and {v,, a = 0, 1, 2, 3} the

reciprocal basis of {y“}, i.e., ¥/ -y, = &%, where the dot is the internal product
in 67 ;. We have y* = hidx*, v, = hin,.dx®. We have

Vidy =800 Va(dr) = —Te(dd®) (100)
V.. = Wipe. V.Y = —wbhy, V.Y = @iy, (101)
Ve.er = wise., V.Y = —obhye, Vv = oy, (102)
From equation (100) we easily obtain (Vr-,u =V)
(V,4) = 3,4 + Yo, A] (103)
with
0, = —23,8)g"" € sec A(THM) C sec /(M) (104)

where g e sec &/*(M) is such that gl ., = g, € Spin,(l, 3).
We observe that formulas (100) and (101) for the covariant derivative
of a homogeneous Clifford field preserves (as it must) its graduation, i.e., if

"'"The negative sign in the definition of w is only for convenience, in order to obtain formulas

in agreement with known results.
2Since M is a spin manifold, Pso,( 3(M) is trivial and {e,}, @ = 0, 1. 2, 3, can be taken as
a global tetrad field for the tangent bundle.
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A, € sec AN(T*M) C sec M), p=0,1,2, 3,4, then [w,, A,] € sec
A(T*M) C sec %/(M), as can be easily verified.

Since
Howu ¥ = w0,y = —y* w, (105)
we have
w, =10 (va A ) (106)
and we observe that
mff’ = —wﬁ“ (107

For A = A,y* we immediately obtain
V., Ay = e(Ap) — WA, (108)

which agrees with the well-known formula for the derivative of a covariant
vector field.
Also, we have

V;LA‘, = au(Aa) - m‘:’wAb
V.A, = 93,(A) — I, Ag (109)
From the general formula (99) the next result follows immediately:

Proposition. The covariant derivative Vy on &7(M) acts as a derivation
on the algebra of sections, i.¢., for A, B € sec #/(M) we have

Vx(AB) = (VxA)B + A(VyB) (110)

The proof is trivial.

4.2. The Lie Derivative of Clifford Fields

Let V € sec TM be a vector field on M which induces a local one-
parameter transformation group ¢t — ¢,. If ¢, stands as usual for the natural
extension of the tangent map d¢, to tensor fields, the Lie derivative £, of a
given tensor field X e sec TM is defined by

(&X)(x) = 1in3 % (X = (@ X)) (1

£y is a derivation in the tensor algebra t/Ml. Then we have, for a, b e sec
ANT*M) C EF (M),
£,a®@b+b®a— 2g a, b))

= (£a)® b + b ® (£va) — 2£,(87(a, b)) (112)
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Sincea® b + b ® a — 2g7(a, b) belongs to J(M), the bilateral ideal
generating the Clifford bundle 7(M), we see from (111) that £, preservers
J(M) if and only if £,g = 0, i.e., V induces a local isometry group, and then
V is a Killing vector (Choquet-Bruhat et al., 1982).

4.3. The Covariant Derivative of Algebraic Dirac Spinor Fields

As discussed in Section 3, ADSF are sections of the real spinor bundle
(M) = Pgpin.13(M) X, 1, where | = %, ~3%(1 + Ey). Here /(M) is a subbundle
of the spin-Clifford bundle %gyin,(13(M). Since both /(M) and
%7 spin.(1.3)(J) are vector bundles, the covariant derivatives of ADSF or DHSF
can be immediately calculated using the general method discussed in Sec-
tion 4.1,

Before we calculate the covariant spinor derivative Vi of a section of
M) [or B spin.1.3(M)], where V e sec TM is a vector field, we must recall
that Vi is a module derivation (Blaine Lawson and Michelson, 1989), i.e.,
if X e sec #(M) and ¢ e sec [(M) [or sec & spin.(1.3(M)], then the follow-
ing holds:

Proposition. Let V be the connection in %7 (/M) to which V* is related.
Then,

VidXe) = (VvX)e + X(Vie) (113)

The proof of this proposition is trivial once we derive an explicit formula
to compute Vi{@), ¢ € sec (M) C sec & spin, 1.3(M).

Let us now calculate the covariant derivative V¢ in the direction of v,
a vector at x, € M of & € sec I(M) C sec Espin,13(M).

Putting go = 1 € Spin,(1, 3), we have, using the general procedure,

o = 8 'd, (114)

where &f, is the “vector” ¢, = &(x(1)) of a section & e sec I(M) C sec

%7 spin.1.3)(1) parallel transported along C: R D/ = M, t = C(1), from x(?)

= C(1) to xg = C(0), (dldD)C(t)] =9 = V.
Putting as in equation (98) g, = ¢~ ">, we get, by using equation (94),

(115)

d |
5 - {2 + =
(Vid)(xo) (dt &, 5 (x)d),) .
If {v“} is an orthogonal field of 1-forms, v € sec ANT*M) C sec #/(M)
dual to the orthogonal frame field {e,}, e, € sec TM, gle,, €;) = 7, and
if {v,} is the reciprocal frame of {vy*}, e, v v, =8} (a, b =0, 1,2, 3),
then for equation (115) we get

Vid = eld) + zw.b (116)
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with
w, = %‘”Z‘”Yb A Ye (l 17)

and we recognize the l-forms w, as being v, = w(e,), where w = f*w, f:
M — U X G, is the global section used to write (114). The Lie algebra of
Spin,(1, 3) is, of course, generated by the “vectors” {vy, A v,}. We have

Ve ¥ = —aiy, (118)

If (x*) is a coordinate chart for U C M and y* = hldx*, a, p. =0, 1, 2, 3,
we also obtain

Vid = 0,(d) +1o,d, o, =300, A Y, (119)

Now, since ¢ € sec (M) C sec B gpin, 1 3(M) is such that des = ¢ with
es = (1 + v9), it follows from Vi ¢ = Vi (dbes) that

eng“eg = () (120)

Now, recalling equation (30), we have a spinorial basis for /(M) given by B°

= {s*},A = 1, 2, 3, 4, s* € sec I(M), with

s'=es =31 +7). &=y, &=y, st =1v'les
(121)

Then, as we learned in Section 2, & = ¢, 5%, where &, are formally complex
numbers. Then

Vid = efd) + j0,b
= [ea(ds) + Fwadsls*
= (eu(da) + Flwy)idp)s" (122)
with
w54 = [w,]3s8 (123)
Vi = Vi(dash)
= e(da)s* + daVis? (124)

From equations (122) and (124) it follows that
Vit = Howlhs® (125)
We introduce the dual space /*(M) of I(M), where I*(M) = Pgpin, 1 3(M) X,

I, where here the action of Spin,(1, 3) on the typical fiber is on the right.
A basis for I*(M) is then p; = {54}, A == 1, 2, 3, 4, 54 € sec [*(M), such that
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sa(s?) = 8% (126)
A simple calculation shows that
VﬁuSA = -'?l_'[wa]/?SB (127)

Since /(M) = (M) ® I(M) (the “tensor-spinor space™) is spanned by the
basis {s* & sz}, we can write

YaSa = [Valiss (128)
with
[Vl = Vs = Yu(s®, 50) (129)
being the matricial representation of v,. It follows that
Vivu(s®, 54) = ex([vald) — b vEs + Jobeyhs — Twiyie  (130)
Now,
G5 — 305 Y5t = (Y- wp)s® (131)
and from w, = @y, A Y4 We get
(Yar 0p)s% = (—wf,v&)s" (132)

From equations (131) and (132) we obtain

Tfey& — Twiiyae = — iy (133)
and then
V;b[‘Ya]g = eb({'Y(z]g) =0 (134)

since, according to a result obtained in Section 2.6, [v,]2 are constant matrices.
Equation (133) agrees with the result presented, e.g., in Choquet-Bruhat et
al. (1982). Also, from w, = twly, A v, it follows that

ol = 30iTve VeI (135)
We can also easily obtain the following results: Writing
Vid = (Vids' (136)
it follows that
Viba = el ) + 30llvin ¥1ibs (137)

and
Vit = e (") — goblvs Y1Ed° (138)
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Equation (138) agrees exactly with the result presented, e.g., by Choquet-
Bruhat er al. (1982) for the components of the covariant derivative of a CDSF
U e sec Pgpin,a3(M) X, C* It is important to emphasize here that the
condition given by (134), namely V;b{y‘,]ﬁ = 0 holds true, but this does not
imply that V,,y¢ = 0, i.e., V need not be the so-called connection of paralleliza-
tion of the M = (M, g, V), which, as is well known, has zero curvature but
nonzero torsion {Bishop and Goldberg, 1980).
The main difference between V* acting on sections of /(M) or of
% spin+1.3)(M) and V acting on sections of (M) is that, for ¢ e sec /(M)
or sec & spin.1.3(M) and A € sec & (M), we must have
Vi(Ad) = (V, A)d + AV, d) (139)

and of course V cannot be applied to sections of /(M) or of Bgpyin, (1.3)(M).
4.4. The Representative of the Covariant Derivative of a
Dirac—Hestenes Spiner Field in (M)

In Section 3.2 we defined a DHSF { as an even section of
@ spin.(13)(M). Then, by the same procedure used in Section 4.3, we get'3

Vil = e () + Fwb, Vb = e ) — o, (140)
and as before
W, = T0hy, Ay, € sec (M) (141)

Now, let ¥ € sec # spin,(1.3(M) such that y'y* + yoy* = 29 (a, b
= {, 1, 2, 3), and let us calculate Vf,a(z\lw”). Using equation (116), we have

Vi) = e (0y") + oyt = (Vi (142)
On the other hand,

Ve, by = (VEWY + WV y) (143)
Comparison of equations (142) and (143) implies that
Vi’ =0 (144)

The matrix version of equ~ation (144) is equation (134).
We know that if ¢, § € sec #dpin,(1.3(M), then Py = X* is such
that X“(x) € R, Vx € M. Then,

Vi, (y"h) = (VP + $y"(Vi D) (145)
and Vi (yy"P)(x) € R, Vx € M.

'3The meaning of e,, ¥, etc.. is as before.
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We are now prepared to find the representative of the covariant derivative
of a DHSF in &7(l). We recall that { is an equivalence class of even sections
of (M) such that in the basis = = {v“}, v € sec ANT*M) C sec (M),
the representative of Y is Y € #/*(M) and the representative of X“ is X*
e sec ANT*M) C sec B7(M) such that

X = Psydy (146)
Let V be the connection acting on sections of #(J/1). Then,
V., (bsy?ds) = {ebs) + o, syl
+ (Ve ¥00s + Uy’ {ea(bs) + $lo,, bs)
= [e (bs) + 3oPs]Y¥s + Usyle(bs) — s, ] (147)

Comparing equations (145) and (147), we see that the following defini-
tion suggests itself.

Definition:
(Vs = Vibs = e,(Us) + 30.bs
(Vi 0)s = Vi s = e,(Ps) — 10s0, (148)
Vi) =Vixy* =0

where (V] {)s, (Vi s, (Vix")s e sec €/(M) are representatives of Vb
(etc.) in the basis % in &7(M).

Observe that the result Viy® = 0 is compatible with the result
Vi, [v.]i = O obtained in equation (133) and is an important result in order
to write the Dirac—Hestenes equation (Section 6).

5. THE FORM DERIVATIVE OF THE MANIFOLD AND THE
DIRAC AND SPIN-DIRAC OPERATORS

Let MM = (M, g, V) be a Riemann—Cartan manifold (Section 4), and let
& (M), I(M), and %7 spin, (1.3)(M) be respectively the Clifford, real spinor, and
spin-Clifford bundles. Let V* be the spinorial connection acting on sections
of (M) or Z spin,.13(M). Let also {e,}, {y'} have the same meaning as
before and for convenience when useful we shall denote the Pfaff derivative
by 4, = e,.
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Definition. Let I be a section of &7 (M), I(M), or B spin,.(1.3(M). The
form derivative of the manifold is a canonical first-order differential operator
d: I' = T such that

o' = (y*9,)T
= 4" (3)) + ¥ A (3L1)) (149)
for v* e sec &7 (M).

Definition. The Dirac operator acting on sections of #7(/) is a canonical
first-order differential operator @: A — 9A, A € sec 7 (), such that

0A = (y'V,)A = vy (V,A) + v A (V,A) (150)

Definition. The spin-Dirac operator'® acting on sections of /() of
® spin.(1.3)(M) is a canonical first-order differential operator D: I' — DT [T’
e sec I(M)] [or I' e sec Espin,1.3(M)] such that

DI' = (yeVe )T
=y (VD) + ¥ A (VD) (15D

The operator @ is sometimes called the Dirac—Kahler operator when A is a
Lorentzian manifold (Graf, 1978), i.e., T(V) = 0, R(V) = 0, where T and
R are respectively the torsion and Riemann tensors. In this case we can
show that

0=d-2% (152)

where d is the differential operator and d the Hodge codifferential operator.
In the spirit of Section 4, we use the convention that the representative of
D {[acting on sections of & spin,1.3(M)] in Z7(M) also will be denoted by

D = vV, (153)

6. THE DIRAC-HESTENES EQUATION IN MINKOWSKI
SPACETIME

Let M = (M, g, V) be the Minkowski spacetime, Z7(AM) be the Clifford
bundle of M with typical fiber 27}, and let ¥ e sec Pgyin, 1 5(M) X, C*
[with p the D'V29 @ DOV representation of SL(2, C) = Spin,(l, 3)]. Then,

'¥In Blaine Lawson and Michelson (1989) this operator [acting on sections of /()] is called
simply the Dirac operator, being the generalization of the operator originally introduced by
Dirac. See also Benn and Tucker (1987) for comments on the use of this terminology.
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the Dirac equation for the charged fermion field ¥ in interaction with the
electromagnetic field A is (Bjorken and Drell, 1964) (A = ¢ = 1)

Y8, — eA )Y = m¥ or Dy — YAV =m¥  (154)

where vy + y¥y* = 2m*", y* being the Dirac matrices given by (31), and
A = A dx* e sec ANT*M).

As shown, e.g., in Rodrigues and Oliveira (1990), this equation is equiva-
lent to the following equation satisfied by ¢ e sec I(M) [pes = b, ex =

(1 + %), y*y¥ + y*y* = 20", y* € sec Espin .3 (M)]:
Doy™y' — eAd = md (155)

where D is the Dirac operator on /(M) and A € sec A (T*M) C sec Z7(M).

Since, as discussed in Section 3, each ¢ is an equivalence class of
sections of #7(A), we can also write an equation equivalent to (155) for s
= dyes, by, ey € sec (M), ex = L1 + YO, y*y* + y'y* = 2mH, v €
sec &/(M), and y* = dx* for the global coordinate functions (x*). In this
case the Dirac operator @ = y*V,, is equal to the form derivative 9 = y*d,,
and we have

Idsyy' — eAds = mbsy° (156)

Since each ¢s can be written ds = Yses [Pz € sec FZ*(M) being the
representative of a DHSF] and y%s = es, we can write the following equation
for Yix, which is equivalent to the Dirac equation (Rodrigues and Oliveira,
1990; Lounesto, 1993, 1994)

MsyY' — eAls = misy® (157)

which is the so-called Dirac—Hestenes equation (Hestenes, 1967, 1976).

Equation (157) is covariant under passive (and active) Lorentz transfor-
mations, in the following sense: consider the change from the Lorentz frame
3 = {y* = dx*} to the frame X = {y* = di*} with ¥* = R™'y*R and R
& Spin,(1, 3) being constant. Then the representative of the Dirac—Hestenes
spinor changes, as discussed in Section 3, from s to $g = PsR™'. Then we
have 9 = y*3, = y*9/0x*, where (x*) and (x*) are related by a Lorentz
transformation and

sR™'RY’R™'RY'R™ — eAdsR™' = mysR™'RYy°R™! (158)

Ny — eAdy = misy’° (159)

Thus our definition of the Dirac—Hestenes spinor fields as an equivalence
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class of even sections of #7{(/M) solves directly the question raised by Parra
(1992) concerning the covariance of the Dirac—Hestenes equation.

Observe that if V¥ is the spinor covariant derivative acting on {ix {(defined
in Section 4.4), we can write equation (157) in intrinsic form, i.e., without
the need of introducing a chart for Jt, as follows:

YVibsyy' — eAds = mpsy? (160)

where v“ is now an orthogonal basis of T*M, and it is not necessarily that
v¢ = dx* for some coordinate functions x“.

It is well known that equation (154) can be derived from the principle
of stationary action through variation of the action

S(v) = Jd“xéB (161)
- eA Yy, ¥

with U+ = ¥*y0,

In the next section we present the rudiments of the multiform derivative
approach to Lagrangian field theory (MDALFT) developed in Choquet-Bruhat
et al. (1982); see also Lasenby er al., 1993) and apply this formalism to
obtain the Dirac—Hestenes equation on a Riemann—Cartan spacetime.

7. LAGRANGIAN FORMALISM FOR THE DIRAC-HESTENES
SPINOR FIELD ON A RIEMANN-CARTAN SPACETIME

In this section we apply the concept of multiform (or multivector)
derivatives first introduced by Hestenes and Sobczyk (1984) (HS) to present
a Lagrangian formalism for the Dirac—Hestenes spinor field DHSF on a
Riemann-Cartan spacetime. In Section 7.1 we briefly present our version of
the multiform derivative approach to Lagrangian field theory for a Clifford
field & e sec €¥(AM), where M is Minkowski spacetime. In Section 7.2 we
present the theory for the DHSF on Riemann—Cartan spacetime.

7.1. Multiform Derivative Approach to Lagrangian Field Theory
We define a Lagrangian density for ¢ € sec %7(/l) as a mapping
£ (x d(x), 8 A dx), 8- ()

4
- Llx, dx), @ A d(x), B-d(x)) € A(THEM) C 7 (M)  (163)
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where @ is the Dirac operator acting on sections of'> (M), and by the
above notation we mean an arbitrary multiform function of ¢, 8 A b,and 8- ¢.
In this section we perform our calculations using an orthonormal and
coordinate basis for the tangent (and cotangent) bundle. If (x*) is a global
Lorentz chart, then y* = dx* and @ = y*V = y*3, = 3, so that the Dirac
operator (@) coincides with the form derivative (9) of the manifold.
We introduce also for ¢ a Lagrangian

L(x, d(x), 8 A d(x), 8- d(x)) € AAT*M) C & (M)
by
Llx, dlx), 3 A dx), - d(x)) = Lx, &), 8 A d(x), 8- d(x)1, (164)

where 1, C sec A%T*M) is the volume form, 7, = dx” A dx' A dx* A dx? for
(x*) a global Lorentz chart.

In what follows we suppose that £[L] does not depend explicitly on x
and we write L(d, d A &, d-d) for the Lagrangian. Observe that

Lid, 0 A d, 3-d) =(L(d, I~ d,d-d))o (165)

As usual, we define the action for ¢ as
S(d) = J Lib,ond,d-d)7,, UCM (166)
U

The field equation for ¢ is obtained from the principle of stationary action
for S(d). Let € sec 7(M) containing the same grades as ¢ € sec &7 (M).
We say that ¢ is stationary with respect to L if

d
2 5@+ myl—p =0 (167)

But, recalling Hestenes and Sobczyk (1984), we see that equation (167) is
just the definition of the multiform derivative of S(¢) in the direction of m,
i.e., we have, using the notation of HS,

d
M * dy S(d) = ES(d) +m)li=o (168)

'S An example of a Lagrangian of the form given by equation (163) appears. e.g., in the theory
of the gravitational field in Minkowski spacetime (Rodrigues and de Souza, 1993). In de
Souza and Rodrigues (1994) we present further mathematical results derived in the Clifford
bundle formalism. Those results are important for the gravitational theory and other field
theories,
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Then

%S(tb tm)li=e = J'rg% {LI(d + m), d A (d +m), d- (b (169)
+ f”fl)]}h:o

Now,
S AL + ), 9 A b+ ), 9+ ( + )l img

=m* gL + (3 AM) * gng L + (3°M) * 8;.4L (170)

Before we calculate (170) for a general ¢ € sec Z7(M), let us suppose that
b = (d), ie., it is homogeneous. Using the properties of the multiform
derivative (Hestenes and Sobcyzk, 1984), we obtain after some algebra the
following fundamental formulas (q = (n),):

M * 9, L = m-3y,L (71
(0 AM) * 0gag, L = 9 [0 (Fare, L)) — (—1)M-[3-(dane, L)) (172)
(@-m) * 85.9,L = 3-[(8a-4,1)] + (—1)M-[0 A (35.4,0)] (173)

Inserting equation (7.9) into (170) and then in equation (169), we obtain,
imposing (d/dt)S(b, + m) = 0,

J {n-[0g,L = (=18 (darg, L) + (=1)9 A (95.4,D)]}7,
u

+ { 3-[M-(Barg, L + 85.4,)]7, =0 (174)
U

The last integral in (174) is null by Stokes’ theorem if we suppose as usual
that m vanishes on the boundary of U.
Then equation (174) reduces to

J (M- [8, L — (=1)8-(Fgap, L) + (—1)0 A (84.4,L)1}1, = O (175)
7

Now since m = (n), is arbitrary and 34, L, 9 (d5.4,L), and 9 A (3,.4,L) are
of grade r, we get

(8g,L = (=13 (dapg, L) + (=1)(84 .,L)), = O (176)

But since d4,(L)o = (94,L), = 34,L, Barp, L = (Jane,L)r+1, €tC., €quation (176)
reduces to

By, L — (=1)8(3pa, L) + (—1)8 A (85.4,L) =0 (177
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Equation (177) is a muitiform Euler—Lagrange equation. Observe that as L

= (L), the equation has the graduation of ¢, e sec A (T*M) C sec &7 (M).
Now, let X e sec B7(M) be such that X = 2_(X), and F(x) = (F(x)),.

From the properties of the multivectorial derivative we can easily obtain

dxF(x) = ax{F(x))

4 4
- Z{; oo AF0) = 20 (B0, F(XDX (178)

In view of this result, if & = Z_o(d), € sec &7 (M), we get as Euler—Lagrange
equation for ¢ the following equation:

E [By, L — (1) Banay, L) + (—1)0 A (35.449, L] =0 (179)

r

We can write equations (177} and (179) in a more convenient form if we
take into account that A, - B, = (—1)“ " PB - A, (r = s)and A, A B, = (— 1)™B,
A A,. Indeed, we now have for ¢, that

9 (dane, L) = 0 (Barg, L)rer = (= 1Y(0an4,L)r+1 " 0 (180)
I A (95.9,L) = 0 A (35.4,L)r-1 = (= 1)(0a.¢, L)1 A O (181)

-
where 8 means that the internal and exterior products are to be done on the
right. Then, equation (179) can be written as

9oL — (65A¢L)~g = (85.4L) A 3 =0 (182)
We now analyze the particular and important case where
Lb,dnd,8-9) =L, dnd + 3d) = L(d, 3d) (183)
We can easily verify that
85.6L(3d) = (32 L(3D)),- (184)
B2 LIID) = (320 L(3D))ra (185)
Then, equation (182) can be written

- -
3oL — (Fag L)re1 0 — (92pL),—11 0

= 3y L — ((95,L)* 8), — ((Bap L) A 3),

fl

(8¢L - (ad,L) J — (aad,L) A a)r = ()

= (3,L — (35L) 3), = 0 (186)
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whence follows the very elegant equation

el — (82pL) 8 = 0 (187)

also obtained in Lasenby er al. (1993).

As an example of the use of equation (187) we write the Lagrangian in
Minkowski space for a Dirac—Hestenes spinor field represented in the frame
3= {y*) [yMy" + yryH = 20ty e sec A(TEM) C sec 2(M)] by & €
sec F/(M)* in interaction with the electromagnetic field A € sec A/(T*M)
C sec %7(M). We have'®

L = Loy = {34y = mpy")¥h — eAly*§) (188)
Then
gL = (yy' — miryO)yyy — eAry’ and ALl =0 (189)

and we get the Dirac—Hestenes equation

ry*y' — eAY = myry° (190)

Also, since (AUys)y = (Ury"JA),, we have
dpL = —ml — ey"PA (191)
a,m,L — ,YZIO‘I, (,YZIO - ,YZ,YI.YO) (192)

Now,

(B4 L) 0 = (') @
and from the above equations we get
—mp — ey’A — (¥'%) 9 = 0
and this gives again

My — eAy = myry°

Another Lagrangian that also gives the DH equation is, as can be easily
verified,

Loy = Goyy>' % — Ly 3 - mpls — eAyy )y (193)

7.2. The Dirac—Hestenes Equation on a Riemann-Cartan Spacetime
Let Mt = (M, g, V) be a Riemann—Cartan spacetime (RCST), i.e., Vg
=0, T(V) # 0, R(V) # 0. Let Z#(M) be the Clifford bundle of spacetime

'*Note that we are omitting, for the sake of simplicity, the reference to the basis T in the
notation for .
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with typical fiber #7) ; and let { € sec @*(JL) be the representative of a
Dirac—Hestenes spinor field in the basis = = {y} [y* € sec A(T*M) C
sec Z7(M), yy* + vPvy¢ = 2m] dual to the basis B = {e,}, e, € sec TM,
a,b=201273

To describe the “interaction” of the DHSF s with the Riemann~Cartan
spacetime we invoke the principle of minimal coupling. This consists in
changing 4 = y“d, in the Lagrangian given by equation (193) by

Yol = YV (194)
where V;_is the spinor covariant derivative of the DHSF introduced in Section
44 ie.,

Vi = e () + s (195)
Let {(x*) be a chart for I/ C M and let 3, = ¢, = h¥d, and y* =

hidx*, with hihy = 8, hihh = 8.
We take as the action for the DHSF & on a RCST

S = f <-;~ Dy ~ 2 472 D (196)

U

- mdnf;> h'dx® A dx' A dx? A dx®
0

where D = V] is the Dirac operator made with the spinor connection
acting on sections of Z/(M) and A~' = [deu(ht)]”'. The Lagrangian L =
{L)o is then

L= fz-'<;21- A L mw>
0

= h“<-‘- {v"(aa + %wa\b)v“% - lbvz‘“(aaﬁ! - % lﬂma)v"] - mllnff>
0

2
(197)
As in Section 7.2, the principle of stationary action gives
o
gL ~ (@3L) 0 =0

To obtain the equations of motion we must recall that

(35¢L) d = au(aauq,L) (199)
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and

a,]qu = h’:’aaumL (200)

Then (198) become
6¢L - au(hg')aaawL - Bu(aauq,L) =0

d5L — 9,(h)dy 4L — 3,(3,,4L) =0 (201)

Now, taking into account that (e, e,] = c%e, and that d,h/h =
hid.hy, we get

d hl = —cby+ 8,Inh (202)

and (201) become
dyL — [0, + 9, In h — B, L = 0
L — [8, + 3, Inh — chlds 4L =0 (203)
Let us calculate explicitly the second of equations (201). We have

95 = h-'B VTV + 04y - m¢] (204)

_ |
da5L = h l<_§

v"dw“") (205)
Then,

3.(03,50) = (3, In h-')h-'(—% v"wm) - B gy

—(3, In b, gL — b~ %yuaamzlo (206)

Using (202) and (204) in the second of equations (201), we obtain
DY + gy by — mi + 1y 9,y — ey idy?® = 0
or
DYy = 3(v'ws = @y )Ny — m = 2y y?'? = 0
Then
Dy = Ly 0y ~ Sehy by —mp =0 (207)
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But
Yo, = fy? (208)
and since w?, = 0 because w’= —w¢’, we have
V@, = (wh — ol)y (209)

Using equation (209) in equation (207), we obtain
Dyy?'? — Fwh, — wip + Oy Yy — mp =0
Recalling the definition of the torsion tensor, T, = w§, — wf, + ¢4, We get
(D + 3 y'y? + miy® = 0 (210)

where T = Thy4

Equation (210) is the Dirac—Hestenes equation on Riemann—Cartan
spacetime. Observe that if M is a Lorentzian spacetime [Vg = 0, T(V) = 0,
R(V) # 0], then equation (210) reduces to

Y3, + To vy + mpy? = (211)

which is exactly the equation proposed by Hestenes (1985) as the equation
for a spinor field in a gravitational field modeled as a Lorentzian spacetime
M. Also, equation (210) is the representation in €7(M) of the spinor equation
proposed by Hehl and Datta (1971) for a covariant Dirac spinor field ¥ &
Pspin.13y X, C* on a Riemann—Cartan spacetime. The proof of this last
statement is trivial. Indeed, first we multiply ¢ in (210) by the idempotent
field (1 + +°), thereby obtaining an equation for the representative of the
Dirac algebraic spinor field in 7(M). Then we translate the equation in J(M)
= Pspin,1.3) X1 1, whence, taking a matrix representation with the techniques
discussed in Section 2, we obtain as equation for ¥ € Pgyin, .3 X, C*,

i(WVV —1iT¥) - m¥ =0, i= /-1 (212)

with T = T%,y% " being the Dirac matrices [equation (31)].

We comment here that equation (210) looks like, but it is indeed very
different from an equation proposed by Ivanenko and Obukhov (1985) as a
generalization of the so-called Dirac~Kihler (-Ivanenko) equation for a
Riemann-Cartan spacetime. The main differences between the equation given
in Ivanenko and Obukhov (1985) and our equation (210} is that in Ivanenko
and Obukhov (1985) ¥ e sec %/ (M), whereas in our approach i, € & *(M)
is only the representative of the Dirac—Hestenes spinor field in the basis %
= {v“}, and also Ivanenko and Obukhov (1985) use V, instead of V; .

Finally we comment that equation (210) has played an important role
in our recent approach to a geometrical equivalence of the Dirac and Maxwell
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equations (Vaz and Rodrigues, 1993a) and also in the double solution interpre-
tation of quantum mechanics (Vaz and Rodrigues, 1993a,b; Rodrigues et
al., 1993b).

8. CONCLUSIONS

We have presented a rigorous study of the Dirac—Hestenes spinor fields
(DHSF), their covariant derivatives, and the Dirac—Hestenes equations on a
Riemann-Cartan manifold M.

Our study shows in a definitive way that covariant spinor fields (CDSF)
can be represented by DHSF that are equivalence classes of even sections
of the Clifford bundle 7(M), i.e., spinors are equivalence classes of a sum
of even differential forms. We clarified many misconceptions and misunder-
standing in the earlier literature concerned with the representation of spinor
fields by differential forms. In particular, we proved that the so-called Dirac—
Kihler spinor fields that are sections of 27(AM) and are examples of amorphous
spinor fields (Section 4.3) cannot be used for the representation of the field
of fermionic matter. With amorphous spinor fields the Dirac-Hestenes equa-
tion is not covariant.

We have also presented an elegant and concise formulation of Lagrangian
theory in the Clifford bundle and used this powerful method to derive the
Dirac—Hestenes equation on a Riemann—Cartan spacetime.

ACKNOWLEDGMENTS
The authors are grateful to CNPq and CAPES for financial support.

REFERENCES

Ablamowicz, R., Lounesto, P, and Maks, J. (1991). Conference report: Second Workshop on
Clifford Algebra and Their Applications in Mathematical Physics, Foundations of Physics,
21, 735-748.

Becher, P. (1981). Dirac fermions on the lattice— A local approach without spectrum degeneracy,
Physics Letters B, 104, 221-225.

Becher, P., and Joos, H. (1982). The Dirac—Kihler equation and fermions on the lattice,
Zeitschrift fiir Physik C, 15, 343-365.

Benn, I. M., and Tucker, R. W. (1987). An Introduction to Spinors and Geometry with Applica-
tions in Physics, Adam Hilger, Bristol.

Benn, I. M., and Rucker, R. W. (1988). Representing spinors with differential forms, in Spinors
in Physics and Geometry, A. Trautman and G. Furlan, eds., World Scientific, Singapore.

Bishop, R. L., and Goldberg, S. L. (1980). Tensor Analysis on Manifolds, Dover, New York.

Bjorken, J. D., and Drell, S. (1964). Relativistic Quantum Mechanics, McGraw-Hill, New York.



Dirac—Hestenes Spinor Fields on RC Manifolds 1899

Blaine Lawson, H., Jr., and Micheisohn, M. L. (1989). Spin Geometry, Princeton University
Press, Princeton, New Jersey.

Blau, M. (1985). Connections on Clitford bundles and the Dirac operator, Letters in Mathemati-
cal Physics, 13, 83-86.

Chogquet-Bruhat, Y. (1968). Géoméirie Différentielle et Systemes Extérienrs, Dunod, Paris.

Choquet-Bruhat, Y., Dewitt-Morette, C., and Dillard-Bleick, M. (1982). Analysis, Manifolds
and Physics, rev. ed.. North-Holland, Amsterdam.

Crawford, J. (1985). On the algebra of Dirac bispinor densities: Factorization and inversion
theorems, Journal of Mathematical Physics, 26, 1439-1441,

Crumeyrolle, A. (1991). Orthogonal and Sympletic Clifford Algebras, Kluwer, Dordrecht.

De Souza, Q. A. G., and Rodrigues, W. A, Jr. (1994). The Dirac operator and the structure of
Riemann~Cartan—Weyl spaces, in Gravitation: The Spacetime Structure, P. Letelier and
W. A. Rodrigues, Jr., eds., World Scientific, Singapore, pp. 177-210.

Fierz, M. (1937). Zur Fermischen theorie des B-zerfalls, Zeitschrift fiir Physik, 104, 553-565.

Figueiredo, V. L., Rodrigues, W. A, Jr., and Oliveira, E. C. (1990a). Covariant, algebraic, and
operator spinors, International Journal of Theoretical Physics, 29, 371-395.

Figueiredo, V. L.. Rodrigues. W. A, Jr., and Oliveira, E. C. (1990b). Clifford algebras and the
hidden geometrical nature of spinors, Algebras, Groups and Geometries, 7, 153—198.

Geroch, R. (1968). Spin structure of space-times in general relativity I, Journal of Mathematical
Physics, 9, 1739-1744.

Geroch, R. (1970). Spin structure of space-times in general relativity I1, Journal of Mathematical
Physics, 11, 343-348.

Graf, W. (1978). Differential forms as spinors, Annales de I'Institut Henri Poincaré, 29, 85—109.

Hehl, F. W., and Datta, B. K. (1971). Nonlinear spinor equation and asymmetric connection
in general relativity, Journal of Mathematical Physics, 12, 1334-1339.

Hestenes, D. (1967). Real spinor fields, Journal of Mathematical Physics, 8, 798-808.

Hestenes, D. (1976). Observables, operators, and complex numbers in the Dirac theory, Journal
of Mathematical Physics, 16, 556-571.

Hestenes, D. (1985). Spinor approach to gravitational motion and precession, International
Journal of Theoretical Physics, 25, 59-T1.

Hestenes, D., and Sobczyk, G. (1984). Clifford Algebra to Geometrical Calculus, Reidel,
Dordrecht.

{vanenko, D., and Obukhov, Yu. N. (1985). Gravitational interaction of fermion antisymmetric
connection in general relativity, Analen der Physik, 17, 59-70.

Kihler, E. (1962). Der innere differentialkalkiil, Rendiconti di Matematica e delle sue Applicazi-
oni, 21, 425-523.

Lasenby, A., Doran, C., and Gull, S. (1993). A multivector derivative approach to Lagrangian
field theory, Foundations of Physics, 23, 1295-1327.

Lichnerowicz, A. (1964). Champs spinoriels et propagateurs en relativité générale, Annales de
UInstitut Henri Poincaré, 13, 233-290.

Lichnerowicz, A. (1984). Champ de Dirac, champ du neutrino et transformations C, P, T sur
un espace temps courbe, Bulletin Société Mathématique de France, 92, 11-100.

Lounesto, P. (1981). Scalar product of spinors and an extension of Brauer-Wall groups,
Foundations of Physics, 11, 721-740.

Lounesto. P. (1993). Clifford algebras and Hestenes spinors, Foundations of Physics, 23,
1203-1237.

Lounesto, P. (1994). Clifford algebras, relativity and quantum mechanics, In Gravitation: The
Spacetime Structure, P. Letelier and W. A. Rodrigues, Jr., eds., World Scientific, Singapore,
pp. 49-80.

Milnor, J. (1963). Spin structures on manifolds, L'Enseignement Mathematique, 9, 198-203.



1900 Rodrigues, de Souza, Vaz, and Lounesto

Parra, J. M. (1992). Relativistic invariance of Dirac’s equation revisited, in Proceedings of the
Relativity Meeting Bilbo, Spain, World Scientific, Singapore.

Pav§i¢, M., Recami, E., Rodrigues, W. A, Jr., Maccarrone, D., Raciti, F., and Salesi, G. (1993).
Spin and electron structure, Physics Letters, 31B, 481488,

Porteous, 1. (1969). Topological Geometry, Van Nostrand, New York.

Rodrigues, W. A, Jr, and De Souza, Q. A. G. (1993). The Clifford bundle and the nature of
the gravitational field, Foundations of Physics, 23, 1465-1490.

Rodrigues, W. A., Jr., and Figueiredo, V. L. (1990). Real spin-Clifford bundle and the spinor
structure of the spacetime, Iniernational Journal of Theoretical Physics, 29, 413-424.

Rodrigues, W. A., Jr., and Oliveira, E. C. (1990). Dirac and Maxwell equations in the Clifford
and spin-Clifford bundles, International Journal of Theoretical Physics, 29, 397-412.

Rodrigues, W. A, Ir. Vaz, J, Jr, and Recami, E. (1993a). About Zitterbewegung and electron
structure, Physics Letters B, 318, 623-628.

Rodrigues, W. A., Ir., Vaz, 1., Jr., and Recami, E. (1993b). Free Maxwell equations, Dirac
equation and nondispersive de Broglie wave packets, in Courants, Amérs, Ecueils en
Microphysique, G. Lochak and P. Lochak, eds., Fondation Louis de Broglie, Paris, pp.
379-392.

Rodrigues, W. A,, Jr,, De Souza, Q. A. G., and Vaz, J., Jr. (1994), Lagrangian formulation in
the Clifford bundle of the Dirac—Hestenes equation on a Riemann-Cartan manifold, in
Gravitation: The Spacetime Structure, P. Letelier and W. A. Rodrigues, Jr., eds., World
Scientific, Singapore, pp. 522-531.

Takabayasi, T. (1957). Relativistic hydrodynamics of the Dirac matter, Progress of Theoretical
Physics. Supplement, 4, 1-80.

Vaz, J., Jr, and Rodrigues, W. A_, Jr. (1993a). Equivalence of the Dirac and Maxwell equations
and quantum mechanics, International Journal of Theoretical Physics, 32, 945-958.
Vaz, 1., Ir., and Rodrigues, W. A_, Jr. (1993b). A basis for double solution theory, in Clifford
Algebras and Their Applications in Mathematical Physics, R. Delanghe, F. Brackx, and

H. Serras, eds., Kluwer, Dordrecht, pp. 345-351.

Vaz, 1., Ir, and Rodrigues, W. A_, Jr. (1994). Zitterbewegung and the electromagnetic field of
the electron, Physics Letters B, 319, 203-208.

Vaz, 1., Jr., and Rodrigues, W. A_, Jr. (1995). Maxwell and Dirac theories as an already unified
theory, in Proceedings of the International Conference on the Theory of the Electron, J.
Keller and Z. Oziewicz, eds., UNAM, Mexico.

Yvon, J. (1940). Equations de Dirac—Madelung, Journal de Physique et de Radium, 8, 18-30.



