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In this paper we study Dirac-Hestenes spinor fields (DHSF) on a four-dimensional 
Riemann-Cartan spacetime (RCST). We prove that these fields must be defined 
as certain equivalence classes of even sections of the Clifford bundle (over the 
RCST), thereby being certain particular sections of a new bundle named the spin- 
Clifford bundle (SCB). The conditions for the existence of the SCB are studied 
and are shown to be equivalent to Geroch's theorem concerning the existence of 
spinor structures in a Lorentzian spacetime. We introduce also the covariant and 
algebraic Dirac spinor fields and compare these with DHSF, showing that all three 
kinds of spinor fields contain the same mathematical and physical information. We 
clarify also the notion of (Crumeyrolle's) amorphous spinors (Dirac-K~ihler spinor 
fields are of this type), showing that they cannot be used to describe fermionic 
fields. We develop a rigorous theory for the covariant derivatives of Clifford 
fields (sections of the Clifford bundle, CB) and of Dirac-Hestenes spinor fields. 
We show how to generalize the original Dirac-Hestenes equation in Minkowski 
spacetime for the case of RCST. Our results are obtained from a variational 
principle formulated through the multiform derivative approach to Lagrangian 
field theory in the Clifford bundle. 

1. INTRODUCTION 

In the following we study the theory of Dirac-Hestenes spinor fields 
(DHSF) and the theory of their covariant derivatives on a Riemann-Cartan 
spacetime (RCST). We also show how to generalize the so-called Dirac- 
Hestenes equation--originally introduced in Hestenes (1967, 1976) for the 
formulation of the Dirac theory of the electron using the spacetime algebra 
~?i.3 in Minkowski spacetime--for an arbitrary Riemann-Cartan spacetime. 
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We use an approach based on the multiform derivative formulation of Lagran- 
gian field theory to obtain the above results. They are important for the study 
of spinor fields in gravitational theory and are essential for an understanding 
of the relationship between the Maxwell and Dirac theories and quantum 
mechanics (Vaz and Rodrigues, 1993a, 1995). 

In order to achieve our goals we start by clarifying many misconceptions 
concerning the usual presentation of the theory of covariant, algebraic, and 
Dirac-Hestenes spinors. Section 2 is dedicated to this subject and we believe 

e o that it improves over other presentations ( .=., Vaz and Rodrigues, 1993a; 
Figueiredo et  al., 1990a,b; Rodrigues and Oliveira, 1990; Rodrigues and 
Figueiredo, 1990; Lounesto, 1993, 1994; Benn and Tucker, 1987; Blau, 1985), 
introducing a new and important fact, namely that all kind of spinors referred 
to above must be defined as special equivalence classes in appropriate Clifford 
algebras. The hidden geometrical meaning of the covariant Dirac spinor is 
disclosed and the physical and geometrical meaning of the famous Fierz 
identities (Rodrigues and Figueiredo, 1990; Lounesto, 1993; Fierz, 1937; 
Crawford, 1985) becomes obvious. 

In Section 3 we study the Clifford bundle ofa  Riemann-Cartan spacetime 
(de Souza and Rodrigues, 1994) and its irreducible module representations. 
This permits us to define Dirac-Hestenes spinor fields (DHSF) as certain 
equivalence classes of even sections of the Clifford bundle. DHSF are then 
naturally identified with sections of a new bundle which we call the spin- 
Clifford bundle. 

We discuss also the concept of amorphous spinor fields (ASF)--a  name 
introduced by Crumeyrolle (1991). The so-called Dirac-Kfihler spinors 
(Kfihler, 1962) discussed by Graf (1978) and used in presentations of field 
theories in the lattice (Becher, 1981; Becher and Joos, 1982) are examples 
of ASF. We prove that they cannot be used to describe fermion fields because 
they cannot be used to properly formulate the Fierz identities. 

In Section 4 we show how the Clifford and spin-Clifford bundle tech- 
niques permit us to give a simple presentation of the concept of covariant 
derivative for Clifford fields, algebraic Dirac spinor fields, and the DHSF. 
We show that our elegant theory agrees with the standard one developed for 
the so-called covariant Dirac spinor fields as developed, e.g., in Lichnerowicz 
(1964, 1984). 

In Section 5 we introduce the concepts of Dirac and spin-Dirac operators 
acting respectively on sections of the Clifford and spin-Clifford bundles. We 
show how to use the spin-Dirac operator on the representatives of DHSF on 
the Clifford bundle. 

In Section 6 we present the multiform derivative approach to Lagrangian 
field theory and derive the Dirac-Hestenes equation on RCST (Choquet- 
Bruhat et  al., 1982). We compare our results with others for the covariant 
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Dirac spinor field (Rodrigues et al., 1994; Hehl and Datta, t971) and also 
for Dirac-Kfihler  fields (K~ihler, 1962; Graf, 1978; Ivanenko and Obuk- 
hov, 1985). 

Finally in Section 7 we present our conclusions. 

2. COVARIANT, ALGEBRAIC, AND D I R A C - H E S T E N E S  
SPINORS 

2.1. Some General Features about Clifford Algebras 

In this section we fix our notations and introduce the main ideas concern- 
ing the theory of Clifford algebras necessary for the intelligibility of the 
paper. We follow with minor modifications the conventions used in Rodrigues 
and Figueiredo (1990) and Lounesto (1993). 

2.1.1. Formal Definition of the Clifford Algebra ~Y(V, Q) 

Let K be a field, char K 4: 2, 3 V a vector space of finite dimension n 
over K, and Q a nondegenerate quadratic form over  V. Denote by 

x . y  = ½(Q(x + y) - Q(x) - Q(y)) (1) 

The associated symmetric bilinear form on V and define the left contraction 
j: AV × AV ---> ̂ V  and the right contraction L: AV × AV ---> AV by the 
following rules: 

1. x J y  = x ' y  
x U y  = x - y  

2. x j 0 , ^  v) = (x j u ) ^  v + ~ ^ ~ x  J v) 
0, ^ v) L x = u ^ (vL x) + (uL x) A 

3. (U A V) J w = u J (u j w) 
u L (v ^ w) = (u L v) L w 

Here x, y • V, u, v, w • ^V, and " is the grade involution in the algebra ^V 
The notation a - b  will be used for contractions when it is clear from the 
context which factor is the contractor and which factor is being contracted. 
When just one of  the factors is homogeneous,  it is understood to be the 
contractor. When both factors are homogeneous,  we agree that the one with 
lower degree is the contractor, so that for a • ArV and b • ^'V, we have 
a ' b  = a J  b i f r  -< s and a . b  = aL  b i f r  -> s. 

Define the (Clifford) product of  x • V and u • AV by 

xu = XAU + x J u  (2) 

-~ln our applications in this paper, K will be R or C, respectively, the real or complex field. 
The quaternion ring will be denoted by H. 
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and extend this product by linearity and associativity to all of ^V This 
provides AV with a new product, and provided with this new product AV 
becomes isomorphic to the Cli f ford a lgebra  ~Z(V,  Q).  

We recall that ,',V = T(V)/I ,  where T(V) is the tensor algebra of V and 
I C T(V) is the bilateral ideal generated by the elements of the form x ® x, 
x E V. It can also be shown that the Clifford algebra of (V, Q) is ~/(v, Q) 
= T(IO/IQ, where IQ is the bilateral ideal generated by the elements of the 
form x ® x - Q(x), x e V. The Clifford algebra so constructed is an 
associative algebra with unity. Since K is a field, the space V is naturally 
imbedded in gt(V, Q), 

i j 
V "-. T(V)  - 4  T(V)/IQ = ~Z'(V, Q) 

IQ = j o i and V ~ iQ(V) C ~ f ( V ,  Q) (3) 

Let ~Z'+(V, Q) [resp., ~/-(V, Q)] be the j-image of Oi~=o T2i(V) [resp., Gi\0 
Tzi+t(V)] in ~'./'(V, Q). The elements of ~Z~(V, Q) form a subalgebra of ~;~(V, 
Q) called the even subalgebra of 7,?~(V, Q). 

~/'(v, Q) has the following property: If A is an associative K-algebra 
with unity, then all linear mappings p: V -4 A such that (p(x)) 2 = Q(x) ,  x 
v, can be extended in a unique way to an algebra homomorphism p: ~2"(V, 
Q) -4A.  

In 7~'~(V, Q) there exist three linear mappings which are quite natural. 
They are extensions of the following mappings: 

Main  Involut ion.  An automorphism ^: ~Y(V, Q) --4 ~/(V, Q), extension 
of eL: V - 4  T(V)/IQ, ~ (x )  = --iQ(x) = --x, V x  ~ V. 

Revers ion .  An antiautomorphism -: ~/(V, Q) -4 yu(v, Q), extension of  
': T~(V) -4 TRV); T~(V) ~ x = xil ® "'" ® xi~ ~ x'  = xi~ ® "'" ® xit. 

Conjugation. " ~f(V,, Q)  - 4  ~/'(V, Q), defined by the composition of 
the main involution ^ with the reversion ~, i.e., if x E ~f(V, Q), then .2 = 
(.f)- = (.2),, 

~/(v,  Q) can be described through its generators, i.e., if E = {E,-} (i = 
1, 2 . . . . .  n) is a Q-orthonormal basis of V, then ~/(V, Q) is generated by 1 
and the E~ are subject to the conditions 

EiEi = Q(Ei) 

EiEj + EjEi = O, i --/: j; i, j = 1, 2 . . . . .  n 

El E2 "'" E,, :~ + 1 (4) 
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2.1.2. The Real Clifford Algebra ~I;,.q 

Let R r'q be a real vector  space o f  dimension n = p + q endowed  with 
a nondegenerate  metric g: RP'U x W"u ~ R. Let E = {El} (i = I, 2 . . . . .  n) 
be an or thonormal  basis o f  RP'q, 

+ 1 ,  i = j =  1 ,2  . . . . .  p 

g(Ei, Ej) = g a = g j i =  - 1 ,  i = j  = p  + 1 . . . . .  p + q = n (5) 
O, i 4 : j  

The Clifford algebra ~: '~' ~7~,.~ = ~?(R  I''q, Q) is the Clifford algebra over R, 
generated by t and the {Ei} (i = 1, 2 . . . . .  n) such that E/z = Q(Ei) = g(Ei, 
El), EiEj = - E j E i  (i 4: j ) ,  and (Ablamowicz  et al., 1991) EIE~ " "  E,, 
+_ 1. The algebra ~/'p.q is obvious ly  o f  dimension 2" and as a vector space it 
is the direct sum o f  vector  spaces ^~ RP'q o f  dimensions (~), 0 <-- k -< n. The 
canonical  basis o f  ^~ R p'q is given by the elements eA = E .  t " ' "  E a  k, 1 <- ¢x~ 
< . - .  < cq. -< n. The element  cj = E~ ". .  E,, E ^" RP'q commutes  (n odd) 
or ant icommutes  (n even) with all vectors Et . . . . .  E,, ~ ^IRP"~ ~ R p'q. The 
center o f  ~ , . q  is A°R ~''q --  R if n is even and it is the direct sum ^°RPU • 
^"R  p'q if n is odd. 

All Clifford algebras are semisimple. If  p + q = n is even, ~t'p.q is 
simple, and if p + q = n is odd, we have the fol lowing possibilities: 

• UT't,.u is simple '~, c.~ = - 1 ~ p - q 4= 1 (mod 4) ~ center  o f  ~Tp.q 
is isomorphic to C. 

2. ~/~p.u is not simple (but is a direct sum o f  two simple algebras) '-* 
9 c~ = + 1 ~ p - q = 1 (mod 4) ~ center o f  ~?'p.q is isomorphic to 

R G R ,  

All these semisimple algebras are direct sums o f  two simple algebras. 
If  A is an associative algebra on the field K, K C__ A, and if E is a vector 

space, a homomorph i sm p from A to End E (End E is the endomorphism 
algebra o f  E) which maps the unit e lement  o f  A to Ide is a called a representa- 
tion of  A in E. The dimension E is called the degree o f  the representation• 
The addition in E together with the mapping A × E ~ E, (a, x) ~ p(a)x 
turns E into an A-module,  the representation module. 

Conversely,  A being an algebra over  K and E being an A-module,  E is 
a vector  space over  K and if a E A, the mapping 21: A --~ ~/,, with ~t,,(x) = 
ax, x E E, is a homomorph i sm A --> End E, and so it is a representation o f  
A in E. The study of  A-modules  is then equivalent to the study of  the 
representations o f  A. A representation p is faithful if its kernel is zero, i.e., 
p(a)x = 0, Vx c E ~ a = 0. The kernel o f  p is also known as the annihilator 
o f  its module, p is said to be simple or irreducible if the only invariant 
subspaces o f  p(a), Va  E A, are E and {0}. Then the representation module 
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is also simple, meaning that it has no proper submodule, p is said to be 
s e m i s i m p l e  if it is the direct sum of  simple modules, and in this case E is 
the direct sum of subspaces which are globally invariant under p(a), Va E 
A. When no confusion arises p(a)x will be denoted by a • x, a * x, or ax. 
Two A-modules E and E' (with the exterior multiplication being denoted 
respectively by • and *) are i s o m o r p h i c  if there exists a bijection q~: E ---> E' 
such that 

q~(x + y) = ,.p(x) + tp(y), Vx, y E E 

~p(a • x) = a * tp(x), Va e A (6) 

and we say that representations p and p' of  A are equivalent if their modules 
are isomorphic. This implies the existence of a K-linear isomorphism ,.p: E 
---> E' such that q~ o p(a) = p'(a) o ,.p, Va c A, or p'(a) = q~ o p(a) o q0-J. If 
dim E = n, then dim E' = n. We shall need the following result. 

W e d d e r b u r n  T h e o r e m  (Porteous, 1969). I fA is a simple algebra, then A 
is equivalent to F(m), where F ( m )  is a matrix algebra with entries in F, F is 
a division algebra, and m and F are unique (modulo isomorphisms). 

2.2. Minimal  Left  I d e a s  o f  ~fp,q 

The minimal left (resp., right) ideals of a semisimple algebra A are of  
the type A e  (resp., eA) ,  where e is a primitive idempotent of A, i.e., e 2 = e 
and e cannot be written as a sum of two nonzero annihilating (or orthogonal) 
idempotents, i.e., e :/: el + e2, where ele2 = e2el = 0, ei  = el ,  e~ = e2. 

Theorem.  The maximum number of  pairwise annihilating idempotents 
in F ( m )  is m. 

The decomposition of ~/~,.q into minimal ideals is then characterized by 
a spectral set {epq.i} of  idempotents of  ~/~.q satisfying (i) ~i  epq.i = 1; (ii) 
em.iepq d = 8oepq.i; (iii) rank of epq.i is minimal ¢0 ,  i.e., epq,i is primitive (i = 
1,2 . . . . .  m). 

By rank of  e~q.i we mean the rank of the AW'+q-morphism epq.i: t~ 
t~epq.i and ,',R t'q = O~=0 ^~(W ''q) is the exterior algebra of  R p'q. Then ~e'~,.q = 
~ ,  l~.q, lip. u = ~/p.qeeq J, and ~ E l~,,q is such that qJepq.i = qJ. Conversely any 
element @ c lip.q can be characterized by an idempotent e~,q.i of minimal rank 
v~ 0 with d~et,q. ~ = @. We have the following result. 

T h e o r e m  (Lounesto, 1981). A minimal left ideal of ~/I,.q is of the type 
ll,.q = ~.-/j,.qepq, where el, q = ~(1 + ec, i) " " / ( 1  + e,k) is a primitive idempotent 
of ~?;,.q and e,~ . . . . .  e,,~ are commuting elements of the canonical basis of 
~?~,.q such that (e~)  2 = 1 (i = 1, 2 . . . . .  k) that generate a group of order 
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2 k, k = q - rq_p, and ri are the Radon-Hurwitz  numbers, defined by the 
recurrence formula r~+8 = ri + 4 and 

i 0 1 2 3 4 5 6 7 

ri 0 1 2 2 3 3 3 3 

If we have a linear mapping L.: g7~,.q ---) g~,.q, L.(x)  = ax, x ~ ~/~,.~, a 
E ~/~,.q, then since lp.q is invariant under left multiplication with arbitrary 
elements of  ~/~,.q, we can consider L.Izp.q: lp.q --+ lp.q and taking into account 
the Wedderburn theorem we have the following result. 

Theorem. I f p  + q = n is even or odd with p - q 4= 1 (mod 4), then 

~/'p.q = EndF(lp.q) = F(m) 

where F = R or C or H, EndF(lp. q) is the algebra of linear transformations 
in ll,.q over the field F, m = dimF(Ir,.q), and F ~ eF(m)e,  e being the representa- 
tion of epq in F(m).  

I f p  + q = n i s o d d ,  w i t h p -  q = 1 (mod 4), then 

~Yp,q = EndF(Ip.q) ~ F(m) • F(m)  

and m = dimF(lp,u) and epu~/~,qepq = R G R or H • H. 
Observe that F is the set 

F = {T ~ EndF(lp.q), TL,  = LoT, Va  E ~fp,q} 

Periodici~. Theorem (Porteous, 1969). For n = p + q --> 0 there exist 
the following isomorphisms: 

~1,,+8 = ~t;,.o ® ~'8.o, ~/0.,,+8 = ~t0.,, ® ~/o.8 (7) 

We can find, e.g., in Porteous (1969) and Figueiredo et aL (1990a,b) 
tables giving the representations of all algebras ~/~,.q as matrix algebras. For 
what follows we need 

complex numbers ~/0,1 - C 

quartemions ~/0.2 --- H 

Pauli algebra ~f3.0 = M:(C) 

spacetime algebra ~/i.3 = Mz(H) 

Majorana algebra ~?~,l - M4(R) 

Dirac algebra ~74.1 --- M4(C) 

We also need the following result. 

(8) 
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Proposition. ~/p+q = ~t~.p_ 1 for p > I and ~;"f,,q~+ = ,~fp,q-l~ for q > 1. 

From the above proposition we get the following particular results that 
we shall need later: 

~)'~3 --~ ~/~3., = ~Z;.o, ~F4., --~ ~2"~.3 (9) 

which means that the Dirac algebra is the complexification of both the 
spacetime or the Majorana algebras. 

Right Linear Structure f o r  I0. q. We can give to the ideal Ip.q = ~2~;,.qe 
(resp. Ii, q = eCCZi,q) a right (resp. left) linear structure over the field f(~Y.t,,q 
~-- F(m) or ~?~,q ~-- F(m) • F(m)). A right linear structure, e.g., consists of 
an additive group (which is lp,q) and the mapping 

I × F --> I; (~, T) ,-, ~T 

such that the usual axioms of a linear vector space structure are valid, e.g., 
we have 4 (t~T)T' = ~(TT'). 

From the above discussion it is clear that the minimal (left or right) 
ideals of ~Yp.q are representation modules of ge'~.q. In order to investigate the 
equivalence of these representations we must introduce some groups that are 
subsets o f  ~c~f~.q. As we shall see, this is the key for the definition of algebraic 
and Dirac-Hestenes spinors. 

2.3. The Groups: ~S~p,q, Clifford, Pinor, and Spinor 

The set of the invertible elements of ~t,,u constitutes a non-Abelian 
group which we denote by ~/~p.q" It acts naturally on UZt,.q as an algebra 
homomorphism through its adjoint representation 

Ad: ~/~,q ----> Aut(~fp.q); U ~ Ad., with Ad.(x) = uxu -~ (11) 

The Clifford-Lipschitz group is the set 

Fp,q : {U E ~Z~p.qlVX ~ R p'q, bLlfa - I  E R p'q } ( 1 2 )  

The set F~.q = Fp.q N ~e'~.q is called special Clifford-Lipschitz group. 
Let N: ~/p,q ---> ~/p.q, N(x) = (YX)o ((")o means the scalar part of the 

Clifford number). We define further: 
The Pinor group Pin(p, q) is the subgroup of Fp.q such that 

Pin(p, q) = {u ~ Fp.qlg(u) = +_1} (t3) 

The Spin group Spin(p, q) is the set 

aFor ~:t:~o 1 = ,/3,n-~(l + 0"3) is a minimal left ideal. In this case it is also possible to give a 
left linear structure for this ideal. See Vaz and Rodrigues ([993a)  and Figueiredo et al. (1990a). 
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Spin(p, q) = {u ~ F~qlN(u)  = -1} (14) 

The Spin+(p, q) group is the set 

Spin+(p, q) = {u ~ Fp+.qIN(u) = +l} (15) 

Theorem. Adieintp,q): Pin(p, q) --> O(p, q) is onto with kernel Z2. 
Ad~spin(p,q): Spin(p, q) --> SO(p, q) is onto with kernel Z2. 

O(p, q) is the pseudoorthogonal group of the vector space R p'q, SO(p, 
q) is the special pseudoorthogonal group of R p'q. We also denote by SO+(p, 
q) the connected component of SO(p, q). Spin.(p, q) is connected for all 
pairs (p, q) with the exception of Spin+(1, 0) = Spin+(0, I) = { ± 1 } and 
Spin+(1, l). We have 

O(p, q) - Pin(p, q), SO(p, q) 
Z2 

_ Spin(p, q) 
Z2 ' SO+(p, q) 

Spin+(p, q) 

Z2 

In the following the group homomorphism between Spin+(p, q) and SO+(p, 
q) will be denoted 

~ :  Spin+(p, q) --> SO+(p, q) (16) 

We also need the following important result: 

Theorem (Lounesto, 1981). For p + q < 5, Spin+(p, q) = {u E 

Lie Algebra  of Spin+(1, 3). It can be shown that for each u e Spin+(l, 
3) one has 

2 
tt = ~ e  F, F E A R  1'3 C ~f'l.3 (17) 

and F can be chosen in such a way as to have a positive sign in (17) except 
in the particular case F z = 0 when u = - e  5 From (17) it follows immediately 
that the Lie algebra of Spin+(l, 3) is generated by the bivectors F ~ A2p-, 1"3 
C ~/~.3 through the commutator product. 

2.4. Geometrical and Algebraic Equivalence of  the Representation 
Modules Ip,q of Simple Clifford Algebras ~"p,q 

Recall that ~/p,q is a ring. We already said that the minimal lateral ideals 
of ~/j,,q are of the form Ip.q = c~Z~,,qepq (or epq~fp.q), where epq is a primitive 
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idempotent. Obviously the minimal lateral ideals are modules over the ring 
~Z~,.q; they are representation modules. According to the discussion of Section 
2. I, given two ideals l~,.q = ~,.qepq and lfi,q = ~/~,.qe',q they are by definition 
isomorphic if there exists a bijection ~: l,.q --4 lfi.q such that 

• (~, + ~2) = ~(~ , )  + ~o(qJ2): ~(aqJ) = a,~(~) 

V a  • ~,/'p,q, "~1.~11, ql 2 E Ip,q (18)  

Recalling the Noether-Skolem theorem, which says that all automor- 
phisms of a simple algebra are inner automorphisms, we have the follow- 
ing result. 

Theorem. When ~7~,,q is simple, its automorphisms are given by inner 
automorphisms x ~ uxu-1,  x • ~'p,q, u • H/*q. 

We also have the following result. 

Proposition. When ~?'p,q is simple, all its finite-dimensional irreducible 
representations are equivalent (i.e., isomorphic) under inner automorphisms. 

We quote also the following result. 

Theorem (Crumeyrolle, 1991). lp,q and lfi,q a r e  isomorphic if and only 
if lfi.q = lp,qX for nonzero X E I'p,q. 

We are thus led to the following definitions: 

1. The ideals Ip.q = ~/p.qepq and l~.q = ~ . q e ; q  are said to be geometri-  
cally equivalent iL for some u • IPp,q, 

t epq UepqU- i (19) 

2. l,.q and l'p,q are said to be algebraically equivalent if 

e~q = uepqu -1 (20) 

for some u • H/**p,q, but u ~ Fp,q. 

It is now time to specialize the above results for ~;e~.3 = M2(H) and to 
find a relationship between the Dirac algebra H/4,1 "= M4(C) and ~/'~,3 and 
their respective minimal ideals. 

Let Y-.o = {Eo, Et, E2, E3} be an orthogonal basis o f R  1"3 C ~/],3, Ev.E~ 
+ E~,E¢ = 2"q~, ~1~, = diag(+ 1, - 1, - 1, - 1). Then, the elements 

e =½(1 + Eo), e' =½(1 + E3Eo), e" =½(1 + EIE2E3) (21) 

are easily verified to be primitive idempotents of ~/].3- The minimal left 
ideals I = ._ffty-C./i,3e, l '  = ~/i,3e', and /" = ~/i,3 e" are right two-dimensional 
linear spaces over the quaternion field (e.g., He = eH = eH/i,3e). According 
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to the definition 2 above, these ideals are algebraically equivalent. For exam- 
ple, e' = ueu -~, with u = (1 + E3) ~ 17L3. 

The elements ~ ~ ~/i.3½(I + Eo) will be called mother  spinors (Lou- 
nesto, 1993a,b). We can show (Figueiredo et al., 1990a) that each • can 
be written 

dp = ~le  + +2E3EIe + d)3E3Eoe + d)4E~Eoe = ~ ~isi 
i 

(22) 

st = e, s2 = E3Ele,  s3 = E3Eoe, s4 = ElEoe (23) 

and where the ~g are formally complex numbers, i.e., each ~i = (ai + b~E2G) 
withai,  b~ ~ R. 

We recall that Pin(l ,  3)/Z2 ~- O(1, 3), Spin(l ,  3)/Z2 ~- SO(I,  3), Spin+ 
(1, 3)/Z2 = SO+(I, 3), and Spin+(t, 3) = SL(2, C) the universal covering 
group of ~*+ - SO+(I, 3), the restricted Lorentz group. 

In order to determine the relation between U?4,1 and ~/],3 we proceed 
as follows: let {F0, F~, F2, F3, F4} be an orthogonal basis of ~/;.i with 
- F ~  = F~ = F2 = F~ = F4 = I, FAF~ = -Ft~FA (A 4= B; A,  B = O, 1 ,2 ,  
3, 4). Define the pseudoscalar 

i = F o F ,  F2F3F4, i 2 =  - 1 ,  iFA = FAi, A = 0, 1 , 2 , 3 , 4  
(24) 

Define 

%~ = F~F4 (25) 

We can immediately verify that %~%v + %v%~ = 2"q~. Taking into account 
that g~i.3 = ~/~1, we can explicitly exhibit here this isomorphism by consider- 
ing the map g: ~Zi.3 ---) ~/~,l generated by the linear extension of  the map 
gO: RI.3 .___) ~P4.1, g#(E¢) = %~ = F~F4, where E~ (ix = 0, 1, 2, 3) is an 
orthogonal basis of R U. Also g(l~t.~. 3) = l+zv  where 1~/~,~ and l.e,4+~ are the 
identity elements in ~f~.3 and ~,/~j. Now consider the primitive idempotent 
of ~7~,3 = ~Z~.l, 

e41 = g(e) = ½(1 + %o) (26) 

and the minimal left ideal 14+l = ~/~,le4,1. The elements Z~ o E I4+,t can be 
~ , . ,  | 

written in an analogous way to • E ~/L.37(1 + Eo) [equation (22)], i.e., 

Z~,, : ~ zi-si (27) 

where 

SI = e41, s2 = --~l~3e4t, s3 = ~3~oe41, s4 = %~%0e41 
(28) 
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and 

Zi = ai + %2C~lbi 

and formally complex numbers, ai, bi ~ R.  

Consider now the elementf,.o ~ ~&.l, 

f~o = e41~(l + i%1%~.) 

= ½(1 + %0)~(1 + i%~%2) (29) 

with i given by equation (24). 
Sincef,~o~/~.d,:. o = Cf~ o = f~oC it follows thatf,.~ is a primitive idempo- 

tent of g;~4.~. We can easily show that each qb~ 0 ~ I,~ o -- gkq.~f':-o can be written 

i 

f l  = fro, A = c ~  ic~3fE0, f3 = c~3~0f'¢o, f4 = %,%0f'Co (30) 

With the methods described in Vaz and Rodrigues (1993a) and Figueiredo 
et al. (1990a) we find the following representation in M4(C) for the generators 

(°oO) 0 ~ % i  ~' ~i = (31) 
%o ~ "/_o = - 1 ~ _  - cri 

where 12 is the unit 2 × 2 matrix and cr~ (i = I, 2, 3) are the standard Pauli 
matrices. We immediately recognize the ~_-matrices in (31) as the standard 
ones appearing, e.g., in Bjorken and Drell (1964). 

The matrix representation of qr~ o E 1~o will be denoted by the same 
letter without the index, i.e., qs~ o ~ qs ~ Ma(C)f, where 

f = ½ ( 1  + _~o)½(1 + i"/,'Y2), i = ~--1 (32) 

We have 

o o i), +2 0 0 
q ~ =  ~3 0 0 +i e C (33) 

~4 0 0 

Equations (22), (27), and (30) are enough to prove that there are bijections 
between the elements of the ideals ~ ' ~ ~/3A~(1 + Eo), ~ . 7 ( 1  + %o), and ~?4,t 

l + % ) ' ( 1  + 
We can easily find that the following relation exists between ~'zo 

~f4.,f~-o and Z,zo ~ ~ 1 ½ ( 1  + %o): 
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~zo = Z,.ff(1 + i%1%2) (34) 

Decomposing Zzo into even and odd parts relative to the Z2-graduation of 
W2.t = f~/t.3, Z~_o = Z+o + Z~o, we obtain Z{o = Z,2o%0, which clearly shows 
that all information of Zz. is contained in Z+o. Then, 

~Zo + i = Zz0~-(l + %o)½(1 + i%1~2) (35) 

Now, if we take into account (Figueiredo et al., I990a) that ~;'÷+ ~'~-4,t St 1 
)q'- I :~t~_/4. I means ~ t 4 ,  I ~t~l.  3 q- ~o) = ~{4,1T( 1 q- cg0), where the symbol ~' ÷+ ~Y++ = ~"+ = 

~ - ' . +  1 ~/.~.o, we see that each Z,:. o e ~74,~,7(1 + %0) can be written 

Z{o $~o~( 1 + %o), ~-o e (~/4.1 ~- g/,.3 (36) 

Then putting Z,_+-o = t~zJ2, we can write equation (35) as 

~o = ~½(1 + %)½(1 + i~ ~2) 

= Zz,,½(l + i%~%2) (37) 

The matrix representations of Z,=, and ~'=o in M4(C) (denoted by the 
same letter without index) in the spinorial basis given by (30) are 

_qj.~ , Z = (38) 

~4 -+~ *2 ~_ +~3 -qqq'~ 00 

2.5. Algebraic  Sp inors  for RPq 

Let ~._ = {~o, ~, ~, . . . .  } be the set of all ordered orthonormal bases 
for R p'q, i.e., each E e ~ .  is the set E = {El . . . . .  El,, Ep+j . . . . .  Ep+q}, 
E~ . . . .  = Ep = 1, E~+, = . . . .  E~+q = - 1 ,  ErE~. = - E , E , .  (r  ¢ s ; r , s  
= 1, 2 . . . . .  p + q = n). Any two bases, say, ~0, ~ e ~z ,  are related by 
an element of the group Spin+(p, q) C Fpq. We write 

= U~o u - I ,  u e Spin+(p, q) (39) 

A primitive idempotent determined in a given basis £ E ~ z  will be denoted 
e,=. Then the idempotents ezo, e`2, eg, etc., such that, e.g., 

e£ = ue,.:ou -1, u E Spin+(p, q) (40) 

define ideals I~o, 1,2, I~2, etc., that are geometrically equivalent according to 
the definition given by (19). We have 

I~ = ul~ou - l ,  u e Spin+(p, q) (41) 
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but since ul~ o = I~_ o, equation (41) can also be written 

I~_ = l~ .u  - I  (42) 

Equation (42) defines a new correspondence for the elements of the ideals, 
l,z.,/,2, I~2, etc. This suggests the following. 

Def in i t ion .  An algebraic spinor for R ~''q is an equivalence class of  the 
quotient set { I~} /R ,  where {I~} is the set of  all geometrically equivalent 
ideals, and ff"zo E Iao and qt~z ~ I~2 are equivalent. 'tt,2 = ~ ,  (mod R) if 
and only if 

• ~ = ~ . u - J  (43) 

qz, z will be called the representative of  the algebraic spinor in the basis ~ 
~ .  Recall that ~ = uE, u - I  = LY,, u ~ Spin+(l. 3), L E ~*+. 

2.6. What Is a Covariant Dirac Spinor (CDS)? 

As we already know, f"o = ~(1 + %o)(1 + i%t%2) [equation (29)1 is a 
primitive idempotent of  ~2"4.1 = M4(C). If u ~ Spin+(I, 3) C_ Spin+O, 1), 
then all ideals I~ = l~ ,u  -~ are geometrically equivalent to I~ o. Since ~o = 
{%0. %1, %2, %3} is a basis for R 1"3 C .~4d~,,l , the meaning of  ~ = U~oU -I  is 
clear. From (30) we can write 

where 

f '  = f~zo, f2 = --~lc~3fEo, 

and 

f, = A ,  f2 = --c~,~3f,2, 

Since ~,2 = qS~ou-~, we get 

Then 

and I~ 3 *,2 = ~ t ~  (44) 

f3 = %3%of~-o, f4 = ~,%of~-o 

f~ = ~3%f~_, f4 = ~ , ~ ` 2  

*~ = Z , , , -7 , .  = Z s ,~( , , - , ) ,Z  = Z +~ 
i i,k k 

+k = ~. Si~(u-I)+i (45) 
i 

where Sik(u -~) are the matrix components of the representation in M4(C) of 
u -I E Spin+(l, 3). As proved in Vaz and Rodrigues (t993a) and Figueiredo 
et  aL (1990a) ,  the matrices S(u)  correspond to the representation D c1/2'°> • 
D re'It2) of SL(2 ,  C) ~-- Spin+(1, 3). 
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We remark that all the elements of  the set {I~} of  the ideals geometrically 
equivalent to Ix0 under the action of  u E Spin+(1, 3) C Spin+(4, 1) have the 
same image I = Ma(C) f ,  where f is given by (32), i.e., 

f =  ½(1 + y_0)(1 + i~h~/2), i = ,if-Z-i- 

where -y~, ~ = 0, 1, 2, 3 are the Dirac matrices given by (31). 
Then, if 

",/: W/4,, ~ M4(C) ~ End(M4(C)f) 

x ~ 3,(x): Ma(C)f---> M4(C)f (46) 

it follows that "y(%~) = "y(~¢) = %,, "/(fx0) = ~(fx) = f f o r  all %~, ~¢  such 
that ~¢ = u%¢u-~ for some u E Spin+(l., 3). Observe that all the information 
concerning the orthonormal frames Eo, ~, etc., disappear in the matrix repre- 
sentation of  the ideals Ix0, I~ . . . .  in M4(C), since all these ideals are mapped 
in the same ideal I = M4(C)f. 

With the above remark and taking into account equation (45), we are 
then led to the following. 

Definition. A covariant Dirac spinor (CDS) for R 1'3 is an equivalent 
class of  triplets (E, S(u), qt), ~£ being an orthonormal basis of R 1'3, S(u) 
D t"z'°) @ D (°'1/2) representation of  Spin+(l, 3), u E Spin+(t, 3), and 't t 
M4(C)f; and 

(X, S(u), qr) ~ (Xo, S(uo), Wo) 

if and only if 

~F = S(u)S-'(uo)Wo, ~(uu6 ' )  

= LEo, L E ~t+, u ~ Spin+(1, 3) (47) 

The pair (X, S(u)) is called a spinorial frame. Observe that the CDS just 
defined depends on the choice of  the original spinorial frame (:~o, u0) and, 
obviously, to different possible choices there correspond isomorphic ideals 
in M,(C). For simplicity we can fix u~ = 1, S(u~) = I. 

The definition of  CDS just given agrees with that given by Choquet- 
Bruhat (1968) except for the irrelevant fact that Choquet-Bruhat uses as the 
space of  representatives of a CDS the complex four-dimensional vector space 
C 4 instead of I = M4(C)f. We see that Choquet-Bruhat's definition is well 
justified from the point of  view of  the theory of  algebraic spinors pre- 
sented above. 
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2.7. Algebraic Dirac Spinors (ADS) and Dirac-Hestenes Spinors 
(DHS) 

We saw in Section 2.4 that there is bijection between ~-o ~ ~/~,~- ~- 
~/~,3 and ~ o  ~ I~-o = ~f~,tf~-o, namely [equation (37)] 

~ -o  = ~-o½(1 + %o)½(1 + i%~%~) 

Then, as we already said, all information contained in ~':-o (which is the 
representative in the basis Eo of an algebraic spinor for R ~'3) is also contained 
in Cvo E ~/,7~" ~-- ~/i~l.3- We are then lead to the following. 

Definition. Consider the quotient set {I~}/~, where {I~} is the set of  
all geometrically equivalent minimal left ideals of  ~;¢~.3 generated by e~ o = 
½(1 + Eo), Z0 = (E0, El, E2, E3) [i.e., 12, I~2 e {l,z}, then I~ = u&u -I =-- 
&u -~ for some u e Spin+(1, 3)1. An algebraic Dirac spinor (ADS) is an 
element of {l~}/~t. Then, if O~2 e I~2, dO~2 e I~2, then O~2 = @~2(mod ~ )  if 
and only if qb~ = O~u -~, for some u e Spin+(1, 3). 

We remark that [see equation (36)] 

0~ = ~ea ,  ~z = ~ e z ,  Cs, ¢~ e ~'~3 

and since e£ = ueyu -~ for some u ~ Spin+(l, 3) we get s 

¢~ = ¢~u-~ (48) 

Now, we quoted in Section 2.3 that for p + q --< 5, Spin+(p, q) = {u E 
,4- g~Tp*ul uti = 1}. Then for all Cx E ~'e'l.3 such that ¢, : t~ v~ 0 we obtain 

immediately the polar form 

¢~ = pU2e~ESnR~ (49) 

where p ~ R +, t3 ~ R, R~_ ~ Spin+(1, 3), Es = EoEIEzE3. With the above 
remark in mind we present the following. 

Definition. A Dirac-Hestenes spinor (DHS) is an equivalence class of 
triplets (Z, u, ~,:), where Z is an oriented orthonormal basis of R 1'3 C c~f'fl,3, 
u ~ Spin+(1, 3), and ¢~ ~ ~t~3)- We say that (5% u, ¢~) -- (Z0, u0, ~-o) if 
and only if ¢~ = ¢~oUotU, ~(UUo I) = L, E = LEo (=- u-luoEoUfflu), u, uo 

Spin+(1, 3), L E ~*+. Here Uo is arbitrary but fixed. A DHS determines 
a set of  vectors X~ E R 1"3 (ix = 0,  1, 2, 3) by a given representative 0£ of 
the DHS in the basis Z by 

¢: £ -~ R'.-', ¢,:.&,.,i,~ = X,., £ = (Eo. L',. E~, E3) (50) 

We give yet another equivalent definition of a DHS: 

SLounesto (1993, 1994) calls 20 the mother of all the real spinors. 
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Definition. A Dirac-Hestenes spinor is an element of the quotient set 
~/'~3/~ such that given the basis I~, 2£ of R 1'3 Q ~fl.3,  .IJ.l~" E~ ~ '~,3,  IIJ~ ~ 
~/~3, then t~: ~ ~ ( m o d  ~ )  if and only if ~,2. = ~.u  -t, ~ = L~ = u'Zu- ~, 
~(u) = L, u ~ Spin+(1, 3), L e ~*+. 

With the canonical form of a DHS given by equation (49) some features 
of the hidden geometrical nature of the Dirac spinors defined above comes 
to light: equation (49) says that when ~_d)~ =# 0 the Dirac-Hestenes spinor 
+,z is equivalent to a Lorentz rotation followed by a dilation and a duality 
mixing given by the term exp(13Es/2), where 13 is the so-called Yvon- 
Takabayasi angle (Yvon, 1940; Takabayasi, 1957) and the justification for 
the name duality rotation can be found in Vaz and Rodrigues (1993a). We 
emphasize that the definition of the Dirac-Hestenes spinors given above is 
new. In the past objects ~ E c~/'~3 satisfying t~X~ = Y for X, Y ~ R I'3 Q 

~/~,3 have been called operator spinors (see, e.g., Hestenes and Sobczyk 
(1984), Lounesto (1993a,b). DHS have been used as the departure point of 
many interesting results (e.g., Vaz and Rodrigues, 1993a, 1994; Pavgi6 et al., 
1993; Rodrigues et al., 1993a). 

2.8. Fierz Identities 

The formulation of the Fierz (1937) identities using the CDS • ~ C 4 

is well known (Crawford, 1985). Here we present the identities for ~'~o ~ 
l,zo -~ (C ® ~/t.3)f~-0 and for the DHS Oz0 ~ oNYX3 (Lounesto, 1993, 1994). 
Let then • E C 4 be a representative of a CDS for R 1'3 associated to the 
basis ~;o = {E o, Eb E2, E3} of R 1'3 C ~fl,3- Then qt, ~ -o  determine the 
following so-called bilinear covariants: 

J~ = qr*~o~/~ = 4 ( ~ o E ~ 0 ) o  

S~  = ~*3,oi~/~,gr = 4 ( ~ o i E ~ o ) o  

K~ = atr*'yoi"/o123 q t  = 4(~_oiEot23E~Xtr~.o)o 

co = - "tI, fLyo '~o 123'~ = - -  4(~o Eoi ~3qt~0)o (51 ) 

where # means Hermitian conjugation and * complex conjugation. We remark 
that the reversion in ~2'4.~ corresponds to the reversion plus complex conjuga- 
tion in C ® ~?'L.3- 

All the bilinear covariants are real and have physical meaning in the 
Dirac theory of the electron, but its geometrical nature appears clearly when 
these bilinear covariants are formulated with the aid of the DHS. 
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Introducing the Hodge dual of a Clifford number X E ~fl,3 by 

*X = Y(Es, E5 = EoE, E2E 3 (52) 

we find that the bilinear covariants given by (51) become, in terms of t[J~ o, 
the representative of a DHS in the orthonormal basis £o = {Eo, El, E> E3} 
of R ''3 C ~/].3, 

qJ~o~o = o. + "01, J = 

~*_.oEot~* o = J, S = 

tl/,voE I E2t~E = S, K = 

~EoE3~-o = K, E~ = 

t~EoEoE3t~z 0 = "kS, qqp.v = 

~ o E o E ,  Ez~:~o = *K 

The Fierz identities are 

f = o.2 + 012 J - K = 0 ,  

J~ E ~" 

Z.~ I;'~t F'v 
2 ~ g v ~  

K~E  ~ 

~q~ E~ 

diag(1, - 1, - 1, -1) 

(53) 

S ' J  = 01K, S - K  = 01J 
(*S)" J = -o.K,  (*S)" K = - o . J  (55) 

S ' S  = 012 _ o.2 ( * S ) ' S  = -2o.01 

JS = -(01 + *o.)K, KS = -(01 + *o.)J 

SJ  -(01 - *o.)K, S K  = -(01 - *o.)J 
S 2 012 -- O .2 -- 2O.('01) (56) 

S - I  - S ( o .  - "01)2/(0"2 Jr- 03 2) : KSK/(O. 2 + 012)2 

The proof of these identities using the DHS is almost a triviality. 
The importance of the bilinear covariants is due to the fact that we can 

recover from them the CDS qt~ o ~ M4(C)for  all other kinds of  Dirac spinors 
defined above through an algorithm due to Crawford (see also Lounesto, 
1993, 1994). Indeed, representing the images of the bilinear covariants in 
-0~[~.3 and f~/'~,l C ~/4.1 under the mapping g [equation (25)] by the same 
letter, we have that the following result holds true: let 

Zr.o = (o. + J + iS + i(*K) + ,01) ~ C ® ~4.3 (57) 

where o., J, S, K, to are the bilinear covariants of ~'zo = (C ® ~/i.3)f'%. Take 
"q~-o ~ (C @ ~/].3)fEo such that f i $ o ~ o  4: 0. Then ~:~o and Z~.o-q,=o differ by 
a complex factor. We have 

j2 = _ K  2, J ^ K = - ( t o  + *o.)S 
(54) 
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1 
q&:o - e-i~Z~-o~qzo (58) 

4N~z,, 

4 
Nn*"- = ((~]-~°Z'q"qz°)°)l/2' e-i~ - N'qzo ('q*~)o (59) 

Choosing rl~_o = fzo, we obtain 

_ - - E "11/2 NI~ ° = -~[cr + J .  Eo S. (El E2) K. 3J e -/~' = + j / l+ l l  (60) 

where t~j is the first component of ~ o  in the spinorial basis {s,.}. 
It is easier to recuperate the CDS from its bilinear covariants if we use 

the DHS ~ o  • ~/'~3 ~'?'+ ~+ = ~ • 4.tJ, since putting 

{ ~,,(1 + Eo)t~,:0 = P (61)  

t~_o(l + Eo)El Ezt~ o = Q 

~o(1 + E0)(l + iE~E2)t~z,, = (P + iQ) (62) 

results in 

P = c r  + J +  to, Q = S + * K  (63) 

and ,( i)2 
Z~_ 0 =  P ~  I + ~ Q  (64) 

valid for o" :~ 0, to :/: 0 [for other cases see Lounesto (1994)]. From the 
above results it follows that ~ -o  can be easily determined from its bilinear 
covariant except for a "complex" EzE~ phase factor. 

3. THE C L I F F O R D  BUNDLE OF SPACETIME AND ITS 
I R R E D U C I B L E  M O D U L E  REPRESENTATIONS 

3 .1 .  T h e  C l i f f o r d  B u n d l e  o f  S p a c e t i m e  

Let M be a four-dimensional, real, connected, paracompact manifold. 
Let TM [T'M] be the tangent [cotangent] bundle of M. 

Definition. A Lorentzian manifold is a pair (M, g), where g e sec 7"*M 
x T*M is a Lorentzian metric of signature (1, 3), i.e., for all x e M, T,M 

T.*M = R ~3, where R 1'3 is the vector Minkowski space. 

Definition. A spacetime At is a triple (M, g, V), where (M, g) is a 
time-oriented and spacetime-oriented Lorentzian manifold and V is a linear 
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connection for M such that Vg = 0. If in addition T(V) = 0 and R(V) 4: 0, 
where T and R are respectively the torsion and curvature tensors, then .kt is 
said to be a Lorentzian spacetime. When Vg = 0, T(V) = 0, R(V) = 0, J~ 
is called Minkowski spacetime and will be denoted by 1VL When Vg = 0, T(V) 
4 :0  and R(V) = 0 or R(V) 4: 0, d/[ is said to be a Riemann-Cartan spacetime. 

In what follows Pso+~,3~(~) denotes the principal bundles of  oriented 
Lorentz tetrads (Rodrigues and Figueiredo, 1990; Choquet-Bruhat et aL, 
1982). By g-~ we denote the "'metric" of  the cotangent bundle. 

It is well known that the natural operations on metric vector spaces, 
such as, e.g., direct sum, tensor product, exterior power, etc., carry over 
canonically to vector bundles with metrics. Take, e.g., the cotangent bundle 
T*M. If "rr: T*M ---) M is the canonical projection, then in each fiber 'rr-I(x) 
= T.*M = R t'3 the "metric" g - t  can be used to construct a Clifford algebra 
~ / ( T * M )  -~ ~/],3. We have the following. 

Definition. The Clifford bundle of spacetime At is the bundle of algebras 

~Z(dlI) = U ~Z'(T.*M) (65) 
x e M  

As is well known, UZ(~)  is the quotient bundle 

"rM 
~ ? ( ~ )  - ( 6 6 )  

J ( ~ )  

where "rM = 0~\o  T°'r(m) and T~°'n(M) is the space of  r-covariant tensor 
fields, and J(M,) is the bundle of ideals whose fibers at x ~ M are the two 
side ideals in "rM generated by the elements of the form a ® b + b ® a - 
2g-~(a, b) for a, b ~ T'M.. 

Let -rr,.: ~ f ( ~ )  --> M be the canonical projection of ~"(Jft) and let { U,~ } 
be an open covering of M. From the definition of a fiber bundle (Lichnerowicz, 
1984) we know that there is a trivializing mapping ~a:  av,TJ(U,,) ---> U,, X 

A 

~1.Ki.3 of the form ~a (p )  = (.rr,.(p), ~,~(p)). If U,~I3 = U~, fq Uis and x E U,~ls, 
p ~ 'rr,Tl(x), then 

A A 

~,(p)  = f,~(x)q~fs(p) (67) 

forf~13(x) E Aut(~/],3), w h e r e f ~ :  U,~ ---) Aut(~/t,3) are the transition map- 
pings of  ~Z(~) .  We know that every automorphism of  ~/],3 is inner and it 
follows that 

A A 

f.~(x)tp~(p) = g~a(x)tp~(p)g.~(x)-~ (68) 

for some g~(x)  e ~ZT,3, the group of invertible elements of  ~/i.3. We can 
write equivalently instead of (68) 
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A A 
f~f~(x)q~f~(p) = q~p(a,~ppagd) (69) 

for some invertible element a ~  ~ ~/ '(T* M). 
Now, the group SO+( I, 3) has, as we know (Section 2), a natural extension 

in the Clifford algebra ~ '  "~ ,~72.3- Indeed we know that ~2~L3 acts naturally on 
UZi,3 as an algebra automorphism through its adjoint representation Ad: u 
Ad,, Ad,,(a) = uau -t .  Also, Ad I spi,+<l,3) = cr defines a group homeomorphism 
or: Spin+(1,3) ---> SO+( 1, 3) which is onto with kernel Z> It is clear, since Ad_ 
= identity, that Ad: Spin+(1, 3) ---> Aut(C~/L3) descends to a representation of 
SO+(1,3). Let us call Ad' this representation, i.e., Ad': SO+( I, 3) ---> Aut(~?~.3). 

! 

Then we can write Ad~,na = Ad,a = uau -t .  
From this it is clear that the structure group of the Clifford bundle ~/(At) 

is reducible from Aut(Tg2"].3) to SO+(1, 3). This follows immediately from the 
existence of the Lorentzian structure (M, g) and the fact that ~?'(At) is the 
exterior bundle where the fibers are equipped with the Clifford product. Thus 
the transition maps of the principal bundle of oriented Lorentz tetrads 
Pso+(i.3)(At) can be (through Ad') taken as transition maps for the Clifford 
bundle. We then have the result (Blaine Lawson and Michelson, 1989) 

~/ ' (At)  = Pso+(I,3)(At) XAd' °~/I,3 (70) 

3.2. Spinor Bundles 

Definition. A spinor structure for At consists of a principal fiber bundle 
"rr~: Pspi,,+~l.3)(At) ---> M with group SL(2, C) -=-- Spin+(l, 3) and a map 

S: Pspln+(l,3)(At) -'> Pso+(I,3)(At) 

satisfying the following conditions: 
1. "rr(s(p)) = Try(p) Vp  ~ Pspin+(l,3)(At) 
2. s (pu)  = s ( p ) ~ ( u )  Vp  E Pspin+(I.3)(At) and ~ :  SL(2, C) ---> SO+(I, 3). 

Now, in Section 2 we learned that the minimal left (right) ideals of ~/p,q 
are irreducible left (right) module representations of ~/~,,q and we defined 
covariant and algebraic Dirac spinors as elements of  quotient sets of the type 
{I,:.}/R (Sections 2.6 and 2.7) in appropriate Clifford algebras. We defined 
also in Section 2 the DHS. We are now interested in defining algebraic Dirac 
spinor fields (ADSF) and also Dirac-Hestenes spinor fields (DHSF). 

So, in the spirit of  Section 2, the following question naturally arises: Is 
it possible to find a vector bundle -try: S(./~) ---> M with the property that each 
fiber over x ~ M is an irreducible module over ~/ ' (T*M)? 

The answer to the above question is in general no. Indeed it is well 
known (Milnor, 1963) that the necessary and sufficient condition for S(At) 
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to exist is that the spinor structure b u n d l e  Pspin+(l ,3)(~,)  exist, which implies 
the vanishing of the second Stiefel-Whitney class of M, i.e., to2(M) = O. 
For a spacetime 3# this is equivalent, as shown originally by Geroch (1968, 
1970), to Pso+(~.3~(3#) being a trivial bundle, i.e., to its admitting a global 
section. When Pspi,,+~L.3~(3#) exists we say that At is a spin manifold. 

Definition. A real spinor bundle for 3# is the vector bundle 

S(Jff) -- Pspin+<l,3~(d~) X~ M (71) 

where M is a left (right) module for ~/i.3 and where la.: Pspi,,+~l..~) ---> SO+(1, 
3) is a representation given by left (right) multiplication by elements of 
Spin+( I, 3). 

Definition. A complex spinor bundle [or 3# is the vector bundle 

Sc(./[/[ ) --  Pspin+(l.3)(d[~) XI~ ̀  ̀M,. (72) 

where M is a complex left (right) module for C ® ~/I.3 -~ ~/~.1 -~ M4(C), 
and where p~,.: Pspin+(I,3) ~ SO+( 1, 3) is a representation given by left (right) 
multiplication by elements of Spin+(l, 3). 

Taking, e.g., Mc = C 4 and Ixc the D (I/2'°) • D (°a/2) representation of 
Spin+(1, 3) in End(C4), we recognize immediately the usual definition of the 
covariant spinor bundle of 3#, as given, e.g., in Choquet-Bruhat (1968). 

Since, besides being right (left) linear spaces over H, the left (right) 
ideals of ~/~.3 are representation modules of ~'i,3, we have the following. 

Definition. 1(3#) is a real spinor bundle for 3# such that M in equation 
(71) is I, a minimal left (right) ideal of ~?].3. 

In what follows we fix the ideal taking I = c~'/i,31(1 + E0) = ~cc~/],3e. If 
art: 1(3#) ---) M is the canonical projection and {U~,} is an open covering of 
M, we know from the definition of a fiber bundle that there is a trivializing 

A 
mapping x~(q) = (art(q), X~,(q)). If U~,I3 = U,, f'l Ula and x e U~,I3, q e 
ar/-~(U~,), then 

×~(q) = g~(x)×~(q) (73) 

for the transition maps in Spin+(1, 3). 6 Equivalently, 

A A 
x~(q) = x~(a~,f~q) (74) 

for some a ~  e ~/'(T*3#). Thus, for the transition maps to be in Spin+(1, 3) 

~We start with transition maps in '(/~,.u and then by the bundle reduction process we end with 
Spin.( I, 3). 
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it is equivalent that the right action of He = eH = eCCl.3 e be defined in the 
bundle, since for q ~ 'rr~l(x), x E U,~, and a ~ H we define qa as the unique 
element of 'rrq L(x) such that 

A A 

×~(qa) = x~(q)a (75) 

Naturally, for the validity of (75) to make sense it is necessary that 

A A 

g~(x) (×~(q)a)  = ( g ~ ( x ) x ~ ( q ) ) a  (76) 

and (76) implies that the transition maps are H-linear. 7 
LetJ~,~: U ~  --~ Aut(~/l.3) be the transition functions for ~f(./R). On the 

intersection U,~ n Uts n U,~ it must hold that 

f~f~fl3v = f¢,~ (77) 

We say that a set of lifts of the transition functions of ~ ' / (~)  is a set 
of elements in ~f]'.3, { &,13}, such that if 

Ad: c~/7. 3 ~ Aut(CS~'h3) 

Ad(u)x = uXu -1, 'qX ~ ot~,,/'l. 3 

then Ad~a = f~13 in all intersections. 
Using the theory of the Cfch cohomology (Benn and Tucker, 1988), it 

can be shown that any set of  lifts can be used to define a characteristic class 
to(~t'(~)) E /~-~(M, H*), the second C(~ch cohomology group with values 
in H*, the space of all nonzero H-valued germs of functions in M. 

We say that we can coherently lift the transition maps ~ ( ~ )  to a set 
{g,~} E ~-f]'.3 if in the intersection U,~ N UI3 n U.~, Vet, ~, ~, we have 

g~agav = g~v (78) 

This implies that to(,~/(3/t)) = id(2), i.e., M is C~ch trivial and the coherent 
lifts can be classified by an element of the first C~ch cohomology group 
/~l(M, H*). Benn and Tucker (1988) proved the following important result: 

Theorem. There exists a bundle of irreducible representation modules 
for ~f(3,t) if and only if the transition maps of ~ / ' (~ )  can be coherently 
lifted from Aut (~ .3 )  to "~f~,3. 

They showed also by defining the concept of equivalence classes of 
coherent lifts that such classes are in one-to-one correspondence with the 
equivalence classes of bundles of irreducible representation modules of 

7Without the H-l inear  structure there exist more general bundles of  irreducible modules for 
~;"(d;t) (Benn and Tucker, 1988). 
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.~f(~) , / (At)  and I ' ( ~ )  being equivalent if there is a bundle isomorphism p: 
/(At) -4 l'(.kt) such that 

p(axq) = axp(q), Va~ E ~f (T*M) ,  Vg ~ "rrFl(x) 

By defining that a spin structure for M is an equivalence class of bundles 
of irreducible representation modules for .-~Z'(M.), represented by I (~) ,  Benn 
and Tucker showed that this agrees with the usual conditions for M to be a 
spin manifold. 

Now, recalling the definition of a vector bundle, we see that the prescrip- 
tion for the construction of / (At)  is the following. Let {U,~} be an open 
covering of M w i t h j ~  being the transition functions for ~2~'(~) and let { g,~13 } 
be a coherent lift, which is then used to quotient the set U,~ U,~ x I, where, 
e.g., I = ~cEfl,3~(1 + E0) to form the bundle U~, U. × 1~fit, where fit is the 
equivalence relation defined as follows. For each x e U~ we choose a minimal 
left ideal l~_~x~ in ~f(T*M) by requiring 8 

A 
tp,~(l~m) = I (79) 

As before, we introduce a,~ E ~Y(T*M) such that 

A 
q~(a,,~) = g~(x)  (80) 

,x d~ 
Then for all X • ~/(T~x~), ~.(X) = tp~(a,~f~Xagd). So, if X • I ~ ,  then 
a,~f~Xagd and also Xagd e l~c, ~. Putting Y,~ = U~ X I~,~Y = U,~ Y., we define 
the equivalence relation fit on Y by (U., x, t~)  -~ (Uf~, x, dj£) if and only if 

*£ = ~_ag,~ (81)  

Then,/(At) = Y/fit is a bundle which is an irreducible module representa- 
tion of qg(~). We see that equation (81) captures nicely for a,~ e Spin+(l, 
3) C ~/'~.3 our discussion of ADS of Section 2. We then have the following. 

Definition. An algebraic Dirac spinor field (ADSF) is a section of/(At) 
with a,l s ~ Spin+(l, 3) C ~z~(.3 in equation (81). 

From the above results we see that ADSF are equivalence classes of  
sections of ~/(.kt) and it follows that ADSF can locally be represented by a 
sum of inhomogeneous differential forms that lie in a minimal left ideal of 
the Clifford algebra ~f~.3 at each spacetime point. 

In Section 2 we saw that besides the ideal I " = ~?~.3~(1 + E0), other 
ideals exist for ~ei.3 that are only algebraically equivalent to this one. In 
order to capture all possibilities, we recall that ~t~.3 can be considered as a 

8Recall the notation of  Section 2, where S. is an orthonormal frame, etc. 
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module over itself by left (or right) multiplication by itself. We are thus led 
to the following. 

Definition. The real spin-Clifford bundle of At is the vector bundle 

~fSpin+(I,3)(At) = Pspin+ft,3l(At) Xl ~ i l ,3  (82) 

It is a "principal cd•j.3 bundle," i.e., it admits a free action of ~t~,3 on 
the right (Rodrigues and Oliveira, 1990; Blaine Lawson and Michelson, 
1989). There is a natural embedding Pspin+(I,3)(At) C ~fSpln+fl,3)(~[) which 
comes from the embedding Spin+(1, 3) C ~t'~3. Hence every real spinor 
bundle for At can be captured from ~fspi,,+~l,3)(At)- ~/Spi,,+~ t.3)(At) is different 
from ~?(At). Their relation can be discovered by remembering that the 
representation 

Ad: Spin+(l, 3) --> Aut(~Ut.3), Ad,,X = uXu -I ,  u e Spin+(l, 3) 

is such that Ad_~ = identity and so Ad descends to a representation Ad' of 
SO+(I, 3), which we considered above. It follows that when Pspi.+~l,3)(At) 
exists 

~f(d[/[) : espin+( 1.3)(d[/[) XAd' ~'~Z"I,3 (83) 

From this it is easy to prove that indeed S(At) is a bundle of modules over 
the bundle of algebras ~f(At). 

We end this section by defining the local Clifford product of  X e sec 
~f(At) by a section of 1(214,) o r  C~Spin+(i.3)(At ). If ~ e I(At), we put Xtp = 4) 
E sec/(At),  and the meaning of (83) is that 

~b(x) = X(x)p(x) ,  V x  E M (84) 

where X(x)q~(x) is the Clifford product of the Clifford numbers X(x), q~(x) 
E ~,C~fl. 3. 

Analogously, if ~ e ~/'Spi,,+ct,3)(At), then 

Xl~ : ~ E ~z"~Spin+(l,3)(At) (85) 

and the meaning of equation (84) is the same as in equation (83). 
With the above definition we can "identify" from the algebraic point of 

view sections of  ~/'(At) with sections of  l(Jl~) or  .o~'e~fSpin+(t.3}(At). 

3.3. Dirac-Hestenes Spinor Fields (DHSF) 

The main conclusion of  Section 3.2 is that a given ADSF which is a 
section of l(At) can locally be represented by a sum of inhomogeneous 
differential forms in ~"(At) that lies in a minimal left ideal of  the Clifford 
algebra ~;/1,3 at each point x e M. Our objective here is to define a DHSF 



1874 Rodrigues, de Souza, Vaz, and Lounesto 

on ~ .  In order to achieve our goal, we need to find a vector bundle such 
that a DHSF is an appropriate section. 

In Section 2.7 we defined a DHS as an element of  the quotient set 
~/~3/fi ,  where f i  is the equivalence relation given by equation (50). We 
immediately realize that if it is possible to define globally on M the equiva- 
lence relation fit, then a DHSF can be defined as an even section of the 
quotient bundle ~/'(.///t)/fi. 

More precisely, if E = {~a} (a = O, 1, 2, 3) and ~ = {~a}, ~/a, .~,, • 
sec AI(T*M) C ~/(M) are such that ~/" = R~"R -I, where R • sec ~/*(./[/[) 
is such that R(x) • Spin÷(1, 3) for all x • M, we say that X - ~. Then 
a DHSF is an equivalence class of even sections of  ~f (~t )  such that its 
representatives ~z and ~2 in the basis X and ~ define a set of  l-forms X" 
• sec AI(T*M) C sec ~¢/(~t) by 

X"(x) = ¢~(x)~(x)(~(x) = ¢~(x)'ya(x)~Jz(x) (86) 

i.e., ¢~ and ¢~ are equivalent if and only if 

tl~2 = ~ER -t (87) 

Observe that for E -- ~ to be globally defined it is necessary that the l- 
forms {~/"} and {~fl} are globally defined. It follows that Pso+(i,3)(,/[/[), the 
principal bundle of  orthonormal frames, must have a global section, i.e., it 
must be trivial. This conclusion follows directly from our definitions, and it 
is a necessary condition for the existence of  a DHSF. It is obvious that the 
condition is also sufficient. This suggests the following. 

Definition. A spacetime At admits a spinor structure if and only if it is 
possible to define a global DHSF on it. 

Then, we have the following result. 

Theorem. Let At be a spacetime (dim M = 4). Then the necessary and 
sufficient condition for M to admit a spinor structure is that Pso+(i,3~(Jl/t) 
admits a global section. 

In Section 3.1 we defined the spinor structure as the principal bundle 
Psp~,+~.3)(Jl/t) and a theorem with the same statement as the above one is 
known in the literature as Geroch's (1968) theorem. Geroch's theorem deals 
with the existence of  covariant spinor fields on At, but since we already 
proved, e.g., that covariant Dirac spinors are equivalent to DHS, our theorem 
and Geroch's are equivalent. This can be seen more clearly once we verify that 

~ ( ~ t )  
f i  ~ ~/~Spln +( i ,3)(d~) (88)  

where ~f'Spin+< 1.3)(At) = Psp|n+(I,3) X t ~l't,3 is the spin-Clifford bundle defined 
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in Section 3.l. To see this, recall that a DHSF determines through equation 
(84) a set of l-forms X" ~ sec ^1(7"*M) C sec ~f(At). Under an active 
transformation, 

X" ,--, X" = RX"R - t ,  R(x)  ~ Spin+(l, 3), Vx ~ M (89) 

we obtain the active transformation of a DHSF, which in the E-frame is 
given by 9 

¢~ ,-. ¢~ = R@,: (90) 

From equation (87) it follows that the action of Spin+(1, 3) on the typical 
tiber ~fi.3 of ~ " ( A t ) / ~  must be through left multiplication, i.e., given u E 
Spin+( 1, 3) and X e ~f~,3, and taking into account that c6~, 3 is a module 
over itself, we can define l. E End(gZi,3) by/,,(X) = ux, VX E gZi,3. In this 
way we have a representation h Spin+(l, 3) ~ End(.~?i.3), u ~ l.. Then we 
can write 

~/(At) 
~/~ -- Pspin+(I.3)(At) Xt ~/'1,3 

3.4. A Comment on Amorphous Spinor Fields 

Crumeyrolle (199 I) gives the name of  amorphous spinors fields to ideal 
sections of the Clifford bundle ~/(At). Thus an amorphous spinor field ~b is 
a section of ~/'(At) such that ~be = qb, with e being an idempotent section 
of ~/'(At ). 

It is clear from our discussion of the Fierz identities that are fundamental 
for the physical interpretation of Dirac theory that these fields cannot be used 
in a physical theory. The same holds true for the so-called Dirac-Ki~.hler 
fields (Ki.hler, 1962; Graf, 1978; Becher, 1981; Hehl and Datta, 1971), which 
are sections of ~/(At). These fields do not have the appropriate transformation 
law under a Lorentz rotation of the local tetrad field. In particular, the 
Dirac-Hestenes equation written for amorphous fields is not covariant (see 
Section 6). We think that with our definitions of algebraic and DH spinor 
fields physicists can safely use our formalism, which is not only nice, but 
extremely powerful. 

4. T H E  COVARIANT DERIVATIVE OF C L I F F O R D  AND 
D I R A C - H E S T E N E S  SPINOR FIELDS 

In what follows, as in Section 3, At = (M, V, g) will denote a general 
Riemann-Cartan spacetime. Since ~Y(At)  = "rM/J(At), it is clear that any 

9Observe also that in the ~ we have for the representative of the actively transformed DHSF 
the relation ~:  = R e a r  - l .  
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linear connection defined in "rM such that Vg = 0 passes to the quotient "~M/ 
J(At) and thus defines an algebra bundle connection (Cmmeyrolle, 1991). In 
this way, the covariant derivative of a Clifford field A E sec ~/'(A/[) is 
completely determined. 

Although the theory of connections in a principal fiber bundle and on 
its associate vector bundles is well described in many textbooks, we recall 
below the main definitions concerning this theory. A full understanding of  
the various equivalent definitions of a connection is necessary in order to 
deduce a nice formula that permits us to calculate in a simple way the 
covariant derivative of Clifford fields and of  Dirac-Hestenes spinor fields 
(Section 4.3). Our simple formula arises due to the fact that the Clifford 
algebra ~tL3, the typical fiber of ~/(At), is an associative algebra. 

4.1. Parallel Transport and Connections in Principal and 
Associated Bundles 

To define the concept of a connection on a PFB (P, M, ~, G) over a 
four-dimensional manifold M (dim G = n), we first recall that the total space 
P of that PFB is itself an (n + 4)-dimensional manifold and each one of its 
fibers ~-l(x) ,  x ~ M, is an n-dimensional submanifold of  P. The tangent 
space TrP, p ~ ~-l(x) ,  is an (n + 4)-dimensional linear space and the tangent 
space Tp~-l(x) of the fiber over x, at the same point p E ~-l(x),  is an n- 
dimensional linear subspace of TpP. It is called a vertical subspace of TpP 
and is denoted by VpP. 

A connection is a mathematical object that governs the parallel transport 
of frames along smooth paths in the base manifold M. Such a transport takes 
place in P, along directions specified by vectors in TpP, which does not lie 
within the vertical space VpP. Since the tangent vectors to the paths on the 
base manifold passing through a given point x ~ M span the entire tangent 
space TxM, the corresponding vectors X ~ TpP (in whose direction parallel 
transport can generally take place in P) span a four-dimensional linear sub- 
space of TpP called a horizontal space of TpP and denoted by HpP. The 
mathematical concept of a connection is given formally by the following. 

Definition. A connection on a PFB (P, M, "~, G) is a field of vector 
spaces HpP C TpP such that: 

1. "rr': HpP --) T~M, x = rr(p), is an isomorphism. 
2. HpP depends differentially on p. 
3. H~I,,, = /~,(H.). 

The elements of HpP are called horizontal vectors and the elements of 
Te~r-I(x) = VpP are called vertical vectors. In view of the fact that "rr: P -~ 
M is a smooth map of the entire manifold P onto the base manifold M, we 
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have that 'rr' ~ rr,:  TP --~ TM is a globally defined map from the entire 
tangent bundle TP (over the bundle space P) onto the tangent bundle TM. 

If x = ,rr(p), then due to the fact that x = 7r(p(t)) for any curve in P 
such that p(t) ~ "tr-l(x) and p(O) = O, we conclude that "rr' maps all vertical 
vectors into the zero vector in TxM, that is, 'rr'(Vt, P) = O, and we have 

T,,P = HpP • V.P, p ~ e 

so that every X ~ TpP can be written 

X = Xh + Xv, Xh E Hr, P, X~ E VpP 

Therefore, if X E TpE we get 'rr'(X) = 'rr'(Xh) = X ~ TxM. Then Xh is 
called the horizontal lift ofX ~ TxM. An equivalent definition for a connection 
on P is given by the following. 

Definition. A connection on the principal fiber bundle (E M, "rr, G) is 
a mapping Fp: TxM --~ TpP, x = 'rr(p), such that: 

1. Fp is linear. 
2. "rr' o Fp = IdrxM, where Idr, M is the identity mapping in Z,M, and 

-rr' is the differential of  the canonical projection mapping "rr: P ~ M. 
3. The mapping p ,--, Fp is differentiable. 
4. FRep = Ryp ,  g e G, and Rg being the right translation in (P, -rr, M, G). 

Definition. Let C: R D I ~ M, t ~ C(t), with x0 = C(0) ~ M, be a 
curve in M and let Po E P be such that "n'(po) = Xo. The parallel transport 
of  P0 along C is given by the curve C: R D I ~ P, t ,-, C(t), defined by 

d d 
dt C(t) = rp ~ c(t) 

with C(0) = Po, C(t) = PlI, "tr(Plt) = x = C(t). 

We now need to know more about the nature of the vertical space VpP. 
For this, let 3( E T~G = (S3 be an element of  the Lie algebra of  G and let f." 
G D U, ~ R, where Ue is some neighborhood of the identity element of  ($3. 
The vector X can be viewed as the tangent to the curve produced by the 
exponential map 

d ^ 
X(f)  = ~f (exp(Xt ) ) l ,=o  

Then for every u ~ P we can attach to each X E T~G a unique element of 
VpP as follows: Let ~ :  P --~ R be given by 

d 
Rv(p)(~)  = ~ ~ ( p  exp(Xt))l,=o 
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By this construction we have attached to each ~( e T~G a unique global 
section of  TP, called the fundamental field corresponding to this element. 
We then have the canonical isomorphism 

Xv(P) ~ ~(, Xv(P) E VpP, X ~ T~G 

and we have 

V~,P = 6~ 

It follows that another equivalent definition for a connection is as follows. 

Definition. A connection on (P, M, ~r, G) is a l-form field co on P with 
values in the Lie algebra (~:~ such that, for each p e P, we have: 

I. ¢%(Xv) = X, Xv e VpP, and X e 6:~ are related by the canonical 
isomorphism. 

2. cop depends differentially on p. 
3. co,%p(R.~X) = (Ad~-'c%)(X). 

It follows that if {cg,,} is a basis of  (~ and {0 i} is a basis of  T~p'P, we 
can write to as 

co. = ¢~a ® ~,, = coCO i ® qj,~ (91) 

where coa are l-forms on E 
The horizontal spaces HpP can then be defined by 

HpP = ker(¢%) 

and we can verify that this is equivalent to the definition of HpP given in 
the first definition of a connection. 

Now, for a given connection co, we can associate with each differentiable 
local section of "rr-I(U) C P, U C M, a 1-form with values in 06. Indeed, let 

f: MDU---->~-s(U) CP,  "n" o f  = IdM 

be a local section of P. We define the I-form f*o~ on U with values in (~:~ 
by the pullback of to b y f  If X e T~M, x e U, 

( f*~t<(X) = ~s~x~(f'x) 

Conversely, we have the following result. 

Theorem. Given co ~ TM ® (sJ and a differentiable section of "rr-I(U), 
U C M, there exists one and only one connection co on 'rr-I(U) such that 

f 'CO = (0. 

It is important to keep in mind also the following result: 
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Theorem. On each principal fiber bundle with paracompact  base manifold 
there exist infinitely many connections. 

As is well known, each local section f determines a local trivialization 

dp: .rr-I(U)--> U × G 

of  "rr: P --> M by setting qb-l(x, g) = f (x)g.  Conversely, • determines f ,  since 
f (x)  = dP-~(x, e), where e is the identity of  G. We shall also need the 
following result. 

Proposition. Let there be given a local trivialization (U, dO), qb: .rr-~(U) 
--~ U × G, and let f :  M D U --> P be the local section associated to it. Then 
the connection form can be written 

(~-I ,oj)x.e = g - ldg  + g-ltog (92) 

where o~ = f ' t o  ~ TU ® (~. We usually write, by abuse of notation, ~ - t*o~  
- o~. (The proof of  this proposition is trivial.) 

We can now determine the nature of  span(HpP). Using local coordinates 
(x/) for U C M and gij for U~ ~ g, J0 we can write 

t~ = g~ldgij + g-%Jg 

tO = tOA~AdX~ = tOA ~ G~A ~_ TxU ® O~ 

and 

[~A, %] = Aec~c  

with faec being the structure constants of  the Lie algebra 05 of the group G. 
Recall now that dim HpP = 4. Let its basis be 

0 0 - - +  
Ox ~ d,i/ 

tx = 0, 1, 2, 3 a n d i ,  j = 1 . . . . .  n = dim G. Since HeP = ker(~p), we 
obtain, by writing 

that 

= --  COI.z(~A ik gkl d~ij A 

where ~Aik  are  the matrix elements of  ~a- 

"~For simplicity, G is supposed here to be a matrix group. The go are then the elements of the 
matrix representing the element g e G. 
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Consider  now the vector  bundle E = P Xo(c )  F associa ted to the PFB 
( E  M, "rr, G) through the linear representat ion p of  G in the vec tor  space  F. 
Consider  the local tr ivialization ~ , :  'rr-I(U~,) ~ U~, x G o f  (P, M, -rr, G), 

A a, 
<P,dP) = ('rr(p), ~,~(p)) with <p,~.~(p): "rr-I(x) ---) G , x  • U~, ~ M. Also, cons ider  
the local trivialization X,~: 'rr-I(U,~) ~ U,~ x Faof  E, wherea~r: E- -~  M is the 

canonical  projection.  We have ×~,(y) = (rt(Y), X,dY)) with ×,~.x(Y): ~ - I ( x )  
F. Then,  for each x • U,13 = U~, fq Up we must  have  

A ,', ,', A 

We then have the fol lowing.  

Definition. The parallel transport  o f  Vo ~ E, "rr(Vo) = x0, a long the curve  
C: R D I ---) M, x0 = C(0), f rom Xo to x = C(t) is the e lement  vii ~ E such that: 

1. "rr(vll) = x. 
2. a a a a 

~P,~.,-o( Po) )<P~,( vo). X,~.~(vll) = P(q~,~.~(PlI) o - 

Definition. Let X be a vector  at Xo • M tangent  to the curve  C: t ,--* 
C(t) on M, Xo = C(0). The  covar iant  der ivat ive  o f  X E sec E in the direction 
of  V at Xo is (VvX)xo • sec E such that 

(VvX)(x0) - (VvX)xo = lim 1 ,--,o t (XII°'' X0) (93) 

where  XI~., is the "vec tor"  X, = X(x(t)) of  a section X ~ sec E parallel 
t ransported along C f rom x(t) to Xo, the unique requi rement  on C being (d/ 
dt)C(t) t,=o = V. 

In the local tr ivialization (U~,, ×,.) o f  E we have  

A 

x,(XII°,) = P(go g~- ~)X,~.~(,)(X,) (94) 

From this last definit ion it is trivial to calculate  the covar iant  der ivat ive  
of  A • sec ~/(d/t)  in the direction of  V. Indeed,  since a spin manifold for M 
is (Section 3) 

~'f(.d/[.) = PSO+( I , 3 )Xad '  ~ f l . 3  = Psp in+( I ,3 )XAd ~°~fl,3 

go, gt - I  ~ Spin+( l ,  3), and p is the adjoint representat ion o f  Spin+(1, 3) in 
~2~.3, we can verify (just take into account  that our bundle is trivial and put 
go = 1 for simplici ty)  that we can write 

AI~, = g;-~A,g,, g, = g(x(t)) • S p i n . ( l ,  3) (95) 

Then,  



Dirac-Hestenes  Spinor Fields on RC Manifolds 1881 

( V v A ) ( x o )  = lim 1 ,~o t ( g~ tA'g' - Ao) (96) 

Now, as we observed in Section 2, each g ~ Spin+(1, 3) is of the form 
+_e Fc'>, where F E sec ^2(T'M) C sec U2"(~), and F can be chosen in such 
a way as to have a positive sign in this expression, except in the particular 
case where F 2 = 0 and R = - e  F. We then write ~ 

and 

g,  = e - l a ~ '  (97) 

to = - 2 g ;  g;  -~ I,=o (98) 

Using equation (98) in equation (97) gives 

(VuA)(xo) = ~ a ,  + ~ [co, A,I (99) 
f=0  

= 0 , 1 , 2 ,  Now let (x ") be a coordinate chart for U C M ,  e ,  = h,, Ov~, a 

3, an orthonormal basis for T U  C T M .  ~2 Let 3'" e sec(T*M) C sec ~ / ( ~ )  
be the dual basis of  {e,} -- ff~. Let ~ = {y'~} and { y , ,  a = 0, 1, 2, 3} the 
reciprocal basis of {3'"}, i.e., y"- 3'~, = 6~,, where the dot is the internal product 
in ~7].3. We have y" = h"d~-~ ~ " • -~--- , 3', = harl~,flx . We have 

Vag3. = F~O~, Va.(dx ~) = - F~(dx~) (100) 

Veue b c Vea~b t, ,. = " ( 101)  = ~.t,e,., = -co,,,.3 ~ , V ~ y b  ¢o,,b% 

= = cob.c,  V~,3'b=co~,% (102) Ve~e b t o p e e ,  V~3" h - ~,,y 

From equation (100) we easily obtain (Va,, -= Vr,) 

A] (V~A) = O~A + - f [ o % ,  

with 

(I03) 

2 
co~ = - 2 ( O ¢ g ) g  - l  E sec ^ ( T ' M )  C sec ~I (A0 (104) 

where g ~ sec ~/*(~t)  is such that g l,. m ----- g,  E Spin+(1, 3). 
We observe that formulas (100) and (101) for the covariant derivative 

of a homogeneous Clifford field preserves (as it must) its graduation, i.e., if 

t, The negative sign in the definition of  oJ is only for convenience, in order to obtain formulas 
in agreement with known results. 

*2Since M is a spin manifold. Pso÷.,3hVt) is trivial and {e,,}. a = 0, l. 2. 3. can be taken as 
a global tetrad field for the tangent bundle. 
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Ap 
^P(T*M) C sec ~ ? ( ~ ) ,  as can be easily verified. 

Since 

we have 

e sec A/'(T*M) C sec ~ Y ( ~ ) , p  = 0, 1, 2, 3, 4, then [~%,At, ] ~ sec 

½[tow, y 'q  = t % . y  ~' = - y ' ~ . t %  (105) 

V~A,, = O~(Aa) - h t o r A h  

7 ~ A ,  = O~(A,) - F~Af~  (109) 

From the general formula  (99) the next result fol lows immediately:  

Proposition. The covariant  derivative Vx on ~ / ' ( ~ )  acts as a derivation 
on the algebra o f  sections, i.e,, for A, B ~ sec ~f(At)  we have 

Vx(AB)  = (VxA)B  + A ( V x B )  (110) 

The proof  is trivial. 

4.2. The Lie Derivative of Clifford Fields 

Let V ~ sec T M  be a vector  field on M which induces a local one- 
parameter  transformation group t ~ tp,. If  ,.p,, stands as usual for the natural 
extension of  the tangent map dip, to tensor fields, the Lie derivative £v of  a 
given tensor field X e sec T M  is defined by 

(£vX)(x)  = lim 1 (X.,. - (q~.t(x)).0 (111) 
t-~0 t 

£v is a derivation in the tensor algebra "r~t. Then we have, for a. b E sec 
^~(T*.~) c ~ / ( ~ ) ,  

£v(a ® b + b ® a - 2g- I (a ,  b)) 

= (£va)  ® b + b ® (£va)  - 2£v(g-~(a ,  b)) (112) 

Also, we have 

t % " b = _  to wb,, (107) 

For A = A, , y  ~ we immediately  obtain 

V,,,,Ab = e,,(Ab) -- to,~bA,. (108) 

which agrees with the wel l -known formula  for the derivative o f  a covariant  
vector  field. 

and we observe that 

1 ab(,, a to w = 7 t% , , ,  ^ %)  (106) 



Dirac-Hestenes Spinor Fields on RC Manifolds 1883 

Since a ® b + b ® a - 2 g - I ( a ,  b)  belongs to J(,/d,), the bilateral ideal 
generating the Clifford bundle ~/'(M.), we see from (111) that £v  preservers 
J(JX) if and only if £ v g  = 0, i.e., V induces a local isometry group, and then 
V is a Killing vector (Choquet-Bruhat et  al., 1982). 

4.3. The Covariant Derivative of Algebraic Dirac Spinor Fields 

As discussed in Section 3, ADSF are sections of the real spinor bundle 
I(,/[/[) = Pspin+~l.31(M) )<1 l, where I = ~fl.3ff(1 + E0). Here I (~)  is a subbundle 
of the spin-Clifford bundle ~/Spi,,.~,3~(~t). Since both I (~ )  and 
TYSpi,+~ ~,3~(~t) are vector bundles, the covariant derivatives of ADSF or DHSF 
can be immediately calculated using the general method discussed in Sec- 
tion 4.1. 

Before we calculate the covariant spinor derivative V~, of a section of 
I (~ )  [or ~fSpin+(i,3)(d~)], where V E sec T M  is a vector field, we must recall 
that V~, is a module derivation (Blaine Lawson and Michelson, 1989), i.e., 
i fX s sec ~/'(d[,t) and q~ ~ sec l(Jl/t) [or sec ~/Spin+tl,3)(Jl/[)], then the follow- 
ing holds: 

Propos i t ion .  Let V be the connection in ~/'(A/[) to which V ̀3 is related. 
Then, 

V~(X~) = (VvX)qo + X(V-~q~) (113) 

The proof of this proposition is trivial once we derive an explicit formula 
to compute V~tp), tp E sec I (~ )  C sec ~_S/Spin+(1,3)(.J~ ). 

Let us now calculate the covariant derivative V','I in the direction of v, 
a vector at x0 E M of ~b ~ sec I(.#[) C sec ~/Spin+(I,3)(.~). 

Putting go = 1 ~ Spin+(l, 3), we have, using the general procedure, 

qbtf °, = g7 '¢', ( I 14) 

where +11 °, is the "vector" ~b, = d~(x(t)) of a section + e sec I (~)  C see 
~fSpi,,+l 1.31(At) parallel transported along C: R D 1 --~ M,  t ~ C(t) ,  from x( t )  
- C(t)  to x0 = C(0), (d /d t )C( t ) l ,=o = v. 

Putting as in equation (98) g, = e-~P-~", we get, by using equation (94), 

(vt:+)(xo) = ~ ¢, + ~ ,,,+, (I 15) 
t=0  

If {3'"} is an orthogonal field of 1-forms, 3" ~ sec AI(T*M) C sec Y?'(A~) 
dual to the orthogonal frame field {e,,}, e,, E sec TM,  g(e,,, e~,) = aq,,i,, and 
if {3',,} is the reciprocal frame of {',/"}, i.e., 3""'3"t, = ~ (a, b = 0, 1, 2, 3), 
then for equation (115) we get 

V'e,,+ = e , ( + )  + ½oJ,,+ (116) 
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with 

I bc~o (JOt, = ~ toa  l b  A 3'C (117) 

and we recognize the l - forms toa as being to,, = to(e,,), where to = f ' t o ,  f :  
M ---) U × G, is the global section used to write (114). The  Lie algebra of  
Spin+(1, 3) is, o f  course,  generated by the "vectors"  {% ^ 3'b}. We have 

- -  bc ,,xt V~.3" b = to,, , , .  (118) 

If (x ~) is a coordinate  chart  for U C M and 3" = h,,ct~-¢ . .~_. , a ,  Ix = O, 1 , 2 , 3 ,  
we also obtain 

V ~ +  = a ~ ( + )  + ~ = ~ ~ '  ~-to~+, t% ~to~3'b ^ 5',. (119) 

Now, since qb E sec l(At) C sec ~fsoi,,+~m,3)(At) is such that ~be~ = qb with 
e~ = ½(1 + 3'0), it fol lows from V~,,~b = V~,,(qbe~) that 

e~V~,e:~ = 0 (120) 

Now, recalling equat ion (30), we have a spinorial basis fo r / (At )  given by [3 ~ 
= {sA}, A = 1, 2, 3, 4, s a E sec / (At ) ,  with 

s I = e:~ = ½(1 + 3'0). s ~ = _3't3'3ev, S 3 = 3'33'Oe,£, s 4 = 3'13'Oe~: 

(121) 

Then,  as we learned in Section 2, qb = qbas a, where qba are formally complex  
numbers. Then 

V'e~,,~b = e,,(~b) + ½ t o . ~  

= [e,,(+a) + ½to,fl?a]S a 

= (e,,(+a) + ½[to,~]AB~bB)s A (122) 

with 

(Da SA  = [(Da]AS B ( 1 2 3 )  

V s [,,,K sA'~ V s  f]) = ea ~,'J~A ! 

= e.(d~a)s A + d~aV~as a (124) 

From equations (122) and (124) it fol lows that 

~ s  S A t A B = v[to,]Bs (125) ca 

We introduce the dual space l * ( A t ) o f  I(M), where I*(M) = Pspin+(t,3)(,/[/[) × r  
I, where here the action of  Spin+(l ,  3) on the typical fiber is on the right. 
A basis for l*(At) is then p.~ = {SA}, A = 1, 2, 3, 4, SA ~ sec/*(At) ,  such that 



Dirac -Hes tenes  Spinor  Fields on RC Manifolds 1885 

SA(S B) = 8] (126) 

A simple calculation shows that 

I B 
7 ~ a S  a = --'5"[COa]ASB ( 1 2 7 )  

Since ~;~(~) = l*(~t) ® I (~ )  (the "tensor-spinor space") is spanned by the 
basis {s A ® ss}, we can write 

~l aS a = [~I a]BAs B ( I  28) 

with 

[%]] = ~t~A --  %(S  B, SA) (129) 

being the matricial representation of %. It follows that 

s B I .B ,C I ,  C .B V e t , . Y a ( s  . SA ) = e b ( [ . y a ] ] )  _ c B COba'YCA "+" - -  ( 1 3 0 )  ~ w b C Y b A  ~ t ° b A Y a C  

Now, 

y1, B ,C ! C B W b c r a a  - -  ~_CObA'YaC) "~A = (~]a" COb) SB 

and from COb = ~CO~dyc A Ya, we get 

(%. coh)s B ,. e = ( -  cob;,/ca)s A 

From equations (131) and (132) we obtain 

I .  B ,C __ I ,C ,B __.  d .B 
~ w b C  yaA ~ W b A  YaC ~- W b a Y d A  

and then 

(131) 

(132) 

(133) 

s B 
V e b [ ~ a ]  A = eh([%]]) = 0 (134) 

since, according to a result obtained in Section 2.6, [%]~- are constant matrices. 
Equation (133) agrees with the result presented, e.g., in Choquet-Bruhat et 

= I .  bc . al. (1982). Also, from co~ ~-~,~ rb ^ % it follows that 

A 1CObcf- CO,,B = ~ ~ t ~ b ,  y,.]a (135) 

We can also easily obtain the following results: Writing 

V sa+ -~ ( V  sad)A)S A (136) 

(137) 

it follows that 

and 

V.~u~)A = ea(qbA ) + I. b f , ~",,ctr,,, Y']]+B 

V s  ot~A = e , , ( d ) A )  _ I b _~co,,,.[%, y,.]A+e ( t 38) 
ett "-v 
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Equation (138) agrees exactly with the result presented, e.g., by Choquet- 
Bruhat et aL (1982) for the components of the covariant derivative of a CDSF 
q/ • sec Pspin+(l,3)(-Jbt) Xp C 4. It is important to emphasize here that the 
condition given by (134), namely ~ B Veb[~,,] A = 0 holds true, but this does not 
imply that V~b3," = 0, i.e., V need not be the so-called connection of paralleliza- 
tion of the At = (M, g, V), which, as is well known, has zero curvature but 
nonzero torsion (Bishop and Goldberg, 1980). 

The main difference between V -~ acting on sections of I(N) or of 
~CC~./Spin+(i,3)(,/~ ) and V acting on sections of ~/(./I/t) is that, for qb • sec/(At) 
or sec ~cc~fSpin.(i,3)(,./~ ) and A • sec ~f(At), we must have 

V~:,,(A+) = (V,, A)+ + A(V~,,+) (139) 

and of course V cannot be applied to sections of/(At)  or of ~Spin+(i,3)(,/[/[). 

4.4. The Representative of  the Covariant  Derivative of a 
D irac -Hes tenes  Spinor Field in ~/(At) 

In Section 3.2 we defined a DHSF ~ as an even section of 
~Spin+(l,3)(d[/~). Then, by the same procedure used in Section 4.3, we get M3 

V ~  = e~(~) + ~to,,~, V~,,~ = e,,(~) - I~ _ v~to,, (140) 

and as before 

= i be, ~)'~(At) (141) O.)a ~(Oa l 'b  A ~c • see  

Now, let ~/" • sec ~Zspi,+lL.3~(Jbt) such that ,y,,,yl, + ~,h3,,, = 2Vl,,b (a, b 
= 0, 1, 2, 3), and let us calculate 7~,,(~',/'). Using equation (116), we have 

s b V~,,(~'y ) e,,(~3, t') + ½to~/b ~ ~' = = (V~,,~).y (142) 

On the other hand, 

s b s b s b = (veoq,)-v q,(v,,;v ) V~,,(~, ) + (143) 

Comparison of equations (142) and (143) implies that 

V x .b ~,,y = 0 (144) 

The matrix version of equation (144) is equation (134). 
We know that if ~, t~ • sec YT'~pi.+ll.3j~), then th '"~ = X" is such 

that X"(x) • R t'3, VX • M. Then, 

v~,,(~-y"C~) = (v~,,q,)~% + ~ h ( V L ~ )  (145) 

and ~ h~ RI,3 V~,,(¢',,, q0(x) • Vx • M. 

~3The meaning of e,,, .yl,, etc., is as before. 
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We are now prepared to find the representative of  the covariant derivative 
of a DHSF in ~f(~t) .  We recall that ~ is an equivalence class of even sections 
of ~Y(J~) such that in the basis X = {3'"}, 3'" e sec ^~(7"*M) C sec ~/'Oft), 
the representative of  ~ is ~,~ e ~ / ~ ( ~ )  and the representative of X" is X" 
e sec ^~(T*M) C sec ~/(2,t) such that 

X" = ~x~"~x (146) 

Let V be the connection acting on sections of ~ / ( ~ ) .  Then, 

V~,,(+x3'b~x) = {e,,(~x) + ½It%, Ox] }3'bt~X 

+ ~bX(V¢,,3'b)t~Z + ~x3'O{ea(+X) + . ~x]} 

= [e,~(*x) + ½t%*x]3'bddx + qJx3'b[e~(t~X) --½t~ZtO,,] (147) 

Comparing equations (145) and (147), we see that the following defini- 
tion suggests itself. 

Definition: 

(V~,,~)X = V~,,~x = ea(~X) +-~to,,~x 

(V,,,~)x" - ----- Vst~x = e,,(t~z) - ~t~to,,_ _ 

s b V x - b  0 (Ve~ )X ------ ~,'y = 

(148) 

where (V~,+)z, (V~,tb)~, (V~,,3's 0)~ e sec ~ / ' ( ~ )  are representatives of  V~,,~ 
(etc.) in the basis ~ in ~'/(N). 

V, .0 = 0 is compatible with the result Observe that the result eaY 
s B V~,[3',da = 0 obtained in equation (133) and is an important result in order 

to write the Dirac-Hestenes equation (Section 6). 

5. THE FORM DERIVATIVE OF THE MANIFOLD AND THE 
DIRAC AND SPIN-DIRAC OPERATORS 

Let ~ = (M, g, V) be a Riemann-Cartan manifold (Section 4), and let 
~?'(d~),/(A/t), and 7~/spi.+(i,3~(~) be respectively the Clifford, real spinor, and 
spin-Clifford bundles. Let V" be the spinorial connection acting on sections 
of l(~t) or UfSp~n+(t,3~(,kt). Let also {e,}, {3"} have the same meaning as 
before and for convenience when useful we shall denote the Pfaff derivative 
by O,, = e,,. 
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Definition. Let F be a section of ~f(.,ft), l(At), o r  ~,C~.fSpin+(i.3)(d~ ). The 
form derivative of the manifold is a canonical first-order differential operator 
O: F ,-, F such that 

oF = ( y % ) F  

= 3'".(0,,(F)) + "y" A (0.(F)) (149) 

for 3'" ~ sec ~ / (N) .  

Definition. The Dirac operator acting on sections of ~t'(At) is a canonical 
first-order differential operator O: A ~-, OA, A ~ sec ~/(Ad.), such that 

0,4 = (3""V~,,)A = ~". (Ve,A) + 3""^ (ve, a )  (150) 

Definition. The spin-Dirac operator 14 acting on sections of l(.kt) of 
~/spi,,+~l.3~(~) is a canonical first-order differential operator D: F --> DF [F 
E sec/(At)] [or F E s e c  -~fSpin+(l.3)(./~)] such that 

¢A S DF = (-,/V~,,)F 

= ". " y '  (V~oF) ([51) ~, (7~F)  + ^ 

The operator 0 is sometimes called the Dirac-Kahler operator when At is a 
Lorentzian manifold (Graf, 1978), i.e., T(V) = 0, R(V) = 0, where T and 
R are respectively the torsion and Riemann tensors. In this case we can 
show that 

0 = d - B (152) 

where d is the differential operator and B the Hodge codifferential operator. 
In the spirit of Section 4, we use the convention that the representative of 
D [acting on sections of C~tspin+(u3)(kt)] in ~7(At) also will be denoted by 

.t2 v D = 3, ~o (153) 

6. T H E  D I R A C - H E S T E N E S  E Q U A T I O N  IN M I N K O W S K I  

S P A C E T I M E  

Let At = (M, g, V) be the Minkowski spacetime, ~ / ( ~ )  be the Clifford 
bundle of At with typical fiber ~fJ.3, and let • ~ sec  Pspin+ll,3)(,~) )<0 Ca 
[with p the D tt/2,°) ~]~ D ~°d/2) representation of SL(2, C) ~- Spin+(l, 3)]. Then, 

~4In Blaine Lawson and Michelson (1989) this operator [acting on sections of l(~f)] is called 
simply the Dirac operator, being the generalization of the operator originally introduced by 
Dirac. See also Benn and Tucker (1987) for comments on the use of this terminology. 
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the Dirac equation for the charged fermion field "If in interaction with the 
electromagnetic field A is (Bjorken and Drell, 1964) (h = c = 1) 

",l~(i3w - e A . ) ~  = m ~  or iDt~ - 3,~ACq r = m ~  (154) 

where 2~2~ ~ + 2~'y ~ = 2-q.., 2 .  being the Dirac matrices given by (31), and 
A = A~dx ~ ~ sec AI(7"*M). 

As shown, e.g., in Rodrigues and Oliveira (1990), this equation is equiva- 
lent to the following equation satisfied by qb ~ sec I ( ~ )  [qbez = ~, e~ - 
(1 + ~/0), ~/~,V~ + ,y~,,/~ = 2Xl~ ' ~,~ ~ sec ~/Spi.+~,3~(kt)]: 

Dqb~/2"y ~ - eAch = md~ (155) 

where D is the Dirac operator on l(.kt) and A ~ sec ^ ' ( T ' M )  C sec ~ ' ( ~ ) .  
Since, as discussed in Section 3, each d~ is an equivalence class of 

sections of  ~f(.kt), we can also write an equation equivalent to (155) for 6~ 
= qb._e~, 6 . ,  e~ ~ sec ~ ( ~ ) ,  e~ = ½(1 + 3P), 3,~/~ + 3,~'~ ~ = 2Xl ~ ,  3 ,~ 
sec ~f(At). and 3 ,~ = dx ~ for the global coordinate functions (x~). In this 
case the Dirac operator 0 = ",/¢V~ is equal to the form derivative 3 = ~/¢0~ 
and we have 

04,~12"y ' - eA+~ = m+.~ l  ° (156) 

Since each 4'~. can be written qb:~ = ~:~e. [~ .  e sec ~d*(A4) being the 
representative of  a DHSF] and 3,°e~ = e~, we can write the following equation 
for ~ ,  which is equivalent to the Dirac equation (Rodrigues and Oliveira, 
1990; Lounesto, 1993, 1994) 

OtiS'y2311 -- e A t ~  = m ~ l  ° (157) 

which is the so-called Dirac-Hestenes equation (Hestenes, 1967, 1976). 
Equation (157) is covariant under passive (and active) Lorentz transfor- 

mations, in the following sense: consider the change from the Lorentz frame 
Y., = { ~  = dx  °'} to the frame ~ = {~/~ = d~ ~} with ~/~ = R- I ' y~R  and R 

Spin+(1, 3) being constant. Then the representative of  the Dirac-Hestenes 
spinor changes, as discussed in Section 3, from +~ to ~ = t~R- i .  Then we 
have O = ~/¢0~ = "V¢O/OYc ~, where (x~) and (2¢) are related by a Lorentz 
transformation and 

O ~ R - 3 R ' y 2 R - I R ' y I R  - l  - e A + . R  -1 = m ~ R - I R ' y ° R  - l  (158) 

i.e., 

a~2~/2~/I - eA~b~ = m ~ t  ° (159) 

Thus our definition of  the Dirac-Hestenes spinor fields as an equivalence 
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class of even sections of ~/'(At) solves directly the question raised by Parra 
(1992) concerning the covariance of the Dirac-Hestenes equation. 

Observe that if V ~ is the spinor covariant derivative acting on ~_ (defined 
in Section 4.4), we can write equation (t57) in intrinsic form, i.e., without 
the need of introducing a chart for At, as follows: 

",/"V~,~/2"/I - eA~_ = mt~'¢ ° (160) 

where "y" is now an orthogonal basis of T'M, and it is not necessarily that 
~/" = dx" for some coordinate functions x". 

It is well known that equation (154) can be derived from the principle 
of stationary action through variation of the action 

S(~) = I d4x ~ (161) 

i 
= - 2  (3'~O~q*+)~ + 2 xP'+(Y-~3~) - mqr+~ (162) 

- e A ~ + ~ _ ~  

with q*+ = qs*'V°. 
In the next section we present the rudiments of the multiform derivative 

approach to Lagrangian field theory (MDALFT) developed in Choquet-Bruhat 
et al. (1982); see also Lasenby et al., 1993) and apply this formalism to 
obtain the Dirac-Hestenes equation on a Riemann-Cartan spacetime. 

7. LAGRANGIAN F O R M A L I S M  FOR THE D I R A C - H E S T E N E S  
SPINOR FIELD ON A R I E M A N N - C A R T A N  SPACETIME 

In this section we apply the concept of multiform (or multivector) 
derivatives first introduced by Hestenes and Sobczyk (1984) (HS) to present 
a Lagrangian formalism for the Dirac-Hestenes spinor field DHSF on a 
Riemann-Cartan spacetime, In Section 7.1 we briefly present our version of 
the multiform derivative approach to Lagrangian field theory for a Clifford 
field ~b ~ sec ~/'(At), where At is Minkowski spacetime. In Section 7.2 we 
present the theory for the DHSF on Riemann-Cartan spacetime. 

7.1. Multiform Derivative Approach to Lagrangian Field Theory 

We define a Lagrangian density for ~b ~ sec ~/(,/I/1,) as a mapping 

~:  (x, ~b(x), O ^ cb(x), 0-~(x))  
4 

~(x, +(x), O A qb(x), O'qb(x)) E ^ (T 'M)  C ~ ( A t )  (163) 
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where 0 is the Dirac operator acting on sections of ~5 ~/(,kt), and by the 
above notation we mean an arbitrary multiform function of+ ,  0 ^ +, and 0.  qb. 

In this section we perform our calculations using an orthonormal and 
coordinate basis for the tangent (and cotangent) bundle. If (x ~) is a global 
Lorentz chart, then "y" = dx ~ and O = 3,~V~ = 3,~c~ = 0, so that the Dirac 
operator (0) coincides with the form derivative (0) of the manifold. 

We introduce also for + a Lagrangian 

L(x, +(x), 0 /x  +(x), O. +(x)) ~ ^ ° ( T ' M )  C ~f'(d/t) 

by 

~(x ,  qb(x), 0 ^ +(x), O.dp(x)) = L(x, dp(x), 0 ^ +(x), O.+(x))x~ (164) 

where -r e C sec A4(T~M) is the volume form, % = dx ° ^ dx I ^ dx a ^ dx 3 for 
(x ~') a global Lorentz chart. 

In what follows we suppose that ~[L] does not depend explicitly on x 
and we write L(qb, 0 ^ qb, ,'9-qb) for the Lagrangian. Observe that 

L(+, 0 ^ +, c9-+) = (L(+, 0 ^ +, 0. dp)) 0 (165) 

As usual, we define the action for d0 as 

S(d~) = fuL(dp,  O ^ +, O.+)'rx, U C M (166) 

The field equation for qb is obtained from the principle of stationary action 
for S(qb). Let rl ~ sec g?'(~t) containing the same grades as qb ~ sec TT'(~). 
We say that qb is stationary with respect to L if 

,4  
=-S(+ + rq)l,=0 = 0 (167) 
dt 

But, recalling Hestenes and Sobczyk (1984), we see that equation (167) is 
just the definition of the multiform derivative of S(qb) in the direction of rl, 
i.e., we have, using the notation of HS, 

d 
~q * O,S(+)  = -fitS(+ + t'q)l,=0 (168) 

~SAn example of a Lagrangian of the form given by equation (163) appears, e.g., in the theory 
of the gravitational field in Minkowski spacetime (Rodrigues and de Souza, 1993). In de 
Souza and Rodrigues (1994) we present further mathematical results derived in the Clifford 
bundle formalism. Those results are important for the gravitational theory and other field 
theories, 
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Then 

Now, 

d s(+ + tq)l,=o = "rg ~t {L[(O? + rq), O A (+ + rq), O.( + (169) 
dt 

+ eq)]} I,=o 

d 
dt {[L($ + t~q), 0 A (~b + ~ ) ,  a-(~b + tXl) ] },=o 

= "q * O+L + (3 ^ +q) * 3~^+L + (O'+q) * 3a.+L (170) 

Before we calculate (170) for a general qb • sec ~f(,kt), let us suppose that 
+ = (~b),, i.e., it is homogeneous. Using the properties of the multiform 
derivative (Hestenes and Sobcyzk, 1984), we obtain after some algebra the 
following fundamental formulas ('q = ('q),): 

"q * 3 + r L  = "q.O+ L (171) 

(0 ^ q )  * Oa^+ L = O.[vl.(O~^+ L)] - (-I)'TI'[O'(Oo^+ L)] (172) 

(0"~1) * O,~., L = O,[a'l . (O,~. , ,L)]  + ( - 1 ) ' ~ 1 - [ 0  A (O,~., L)] (173) 

Inserting equation (7.9) into (170) and then in equation (169), we obtain, 
imposing (d/dt)S(+, + eq) = O, 

fu {~l.[O+ L - + ( -1 ) ' 0  A (-- 1)tO" (aa^+,L) (Oa.+ L)]}'rg 

+ fu O.['q.(Oo^,,L + Oo.,L)]-rg = 0 (174) 

The last integral in (174) is null by Stokes' theorem if we suppose as usual 
that "q vanishes on the boundary of U. 

Then equation (174) reduces to 

v{'q'[O+,L - (-1)'O.(O~^,,L) + ( - 1 ) ' 0  ^ (a0.,  L)]}'r~ = 0 (175) 

Now since zl = (~q)r is arbitrary and O+L, O.(Oo^+L), and 0 A (O,~.,L) are 
of grade r, we get 

(O, L - (-l)'O.(O~^+rL) + (--l)r(0a .+ L)) r = 0 (176) 

But since O+,(L)o = (O+ L)r = a+ L, O,~^+ L = (O~^,,L),+l, etc., equation (t76) 
reduces to 

O+ L - ( - l ) 'a . (a ,~^ ,  L) + (-1)r0 ^ (O~.+ L) = 0 (177) 
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Equation (177) is a multiform Eu ler -Lagrange  equation. Observe that as L 
= (L)o the equation has the graduation of qb, E sec ^ ' (T 'M)  C sec ~ f ( ~ ) .  

Now, let X ~ sec ~ f ( ~ )  be such that X = Z4=o(X), and F(x) = (F(x))o. 
From the properties of  the multivectorial derivative we can easily obtain 

axE(x)  = ax(F(x))o 

4 4 

= ~ a(x~(F(x))o = ~ (a<x),F(X))o (178) 
s=0 s=0 

In view of this result, if + = E4=0(+)r E sec ~ / ( ~ ) ,  we get as Euler -Lagrange  
equation for + the following equation: 

[a~,>L - (-I)'O.(O,~^<+>L) + ( - 1 ) ' a  ^ (0~.¢1,) L)] = 0 (179) 
r 

We can write equations (177) and (179) in a more convenient form if we 
take into account that A,. B~ = ( -  1 )rC~-t~B ~ . A, (r ----- s) and Ar A B~ = ( -  1 )~'~B~ 
A Ar. Indeed, we now have for qb, that 

6--  

a-(a~^,l, L) --- O'(aa^+~L),+l = (-l)r(aa^+~L)r+l " O (180) 

6 -  

a A (O~.+L) ----- O A (0~.,I, L),_ t = (-1)~(O~.+L)r+l A a (181) 

where 0 means that the internal and exterior products are to be done on the 
right. Then, equation (179) can be written as 

O+L - (a~^+L)-~ - (Oo.+L)A ~ = 0 (182) 

We now analyze the particular and important case where 

a(+,  a ^ d~, o - + )  = a(d~, 0 ^ qb + 0-~b) = L(~b, 0~b) (183) 

We can easily verify that 

ao. ,  L(O+) = (O~eo L(Od~)),_ ~ (184) 

a~^, L(O+) = (O~, L(O+)),+, (185) 

Then, equation (182) can be written 

O+L - (O~+L),+~" O - (Oa+L)r-~l O 

= a , L  - ((O0,L)" 0),  - ((0,-,+L) A O), 

= (a+L - (O+L). a - ( ~ + L ) / x  , = 0 

6--  

= (O+L - ( a ,L)  a),  = 0 (186) 
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whence  fol lows the very e legant  equat ion 

O+L - (O,~+L) '0 = 0 (187) 

also obta ined in Lasenby  et al. (1993). 
As an example  of  the use o f  equat ion (187) we write the Lagrangian  in 

Minkowsk i  space for a D i r a c - H e s t e n e s  spinor  field represented in the f rame 
= {~/~} [~'~"F + "Y~'~ = 2"q~L 3 '~ ~ sec AI(T*M) C sec ~ ? ( ~ ) ]  by ~ 

sec ~,~(~)+ in interaction with the e lec t romagnet ic  field A E sec ^~(T*M) 
C sec ~/'(d/l,). We have 16 

L = LDH = ((0q/'y2~ 1 -- m~'y°)'y°l~/ - eAtb-¢°~)o 188) 

Then 

a~,L = (0~ /2~  ~ - m ~ / ° ) ~ 0  - eA~3P and a~,~L = 0 189) 

and we get the D i r a c - H e s t e n e s  equat ion 

O l k ] / ~ 2 ~  I - -  eA+ : m~'y  ° 190) 

Also, since (A+3,°t~)o = (~3,°~A)o, we have  

O, L = - m ~  - e 'c°dA 191) 

Oa+L = ~/-~t°tl) (,y2JO = ~/23,1,,/o ) 192) 

Now, 

(3,~,L) 3 = (3fl'°t~) 

and f rom the above  equat ions we get 

- - m ~  - -  e ' y ° ~ J A  - (~/21o~) O = 0 

and this g ives  again 

a@y2"# - e A ~  = m ~ ,  ° 

Another  Lagrangian  that also gives  the DH equation is, as can be easily 
verified,  

L b ,  (4a  2,0q, _ ,  .,.,0.T. = _ ~ y  ~ - - eAt~3P~) o (193) 

7.2. The  D i r a e - H e s t e n e s  Equat ion  on a R i e m a n n - C a r t a n  Space t ime  

Let d l  = (M, g, V) be a R i e m a n n - C a r t a n  spacet ime (RCST),  i.e., Vg 
= 0, T(V)  4= 0, R(V) ~ 0. Let  ~ ? ' ( ~ )  be the Clifford bundle of  spacet ime 

'6Note that we are omitting, for the sake of simplicity, the reference to the basis Y in the 
notation for qJ. 
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with typical fiber ~/'1.3 and let + ~ sec ~ z ' ( ~ )  be the representative of a 
Dirac-Hestenes spinor field in the basis Z = {'y"} [3," E sec At(T'M) C 
sec ~f(~t) ,  y,,yb + yhy,, = 2.q,b] dual to the basis ~ = {e,,}, e,, ~ sec TM, 
a , b  = 0, 1 , 2 , 3 .  

To describe the "interaction" of the DHSF + with the Riemann-Cartan 
spacetime we invoke the principle of  minimal coupling. This consists in 
changing a = y"O. in the Lagrangian given by equation (193) by 

yaO.¢ ,-. 3,"V~,,0 (194) 

where 7~, is the spinor covariant derivative of  the DHSF introduced in Section 
4.4, i.e., 

V~,,0 = e,,(tD + ½to,,~ (195) 

Let (x ~) be a chart for U C M and let 0. =- e~ = h~O,, and y~ = 
h~dx ~, with h~h~, = g~, h'~h~ = r3g. 

We take as the action for the DHSF 0 on a RCST 

I u < 2  1 '-- S(t~) = D,y2,ot~ _ 2 ~,,/2,o~ D (196) 

- m~>oh-)dx ° A dx I A dx 2 A dx 3 

where D = 3, ~,, is the Dirac operator made with the spinor connection 
acting on sections of ~/(.kt) and h -I = [det(hD] -l. The Lagrangian L = 
(L)0 is then 

L = h_l< l 1 <-- >o Dt~2mt~ -- ~ t~'y21°t~ D - mt~t~ 

= h - ' < l [ Y " ( O ~ + ~ t % * ) Y z ' ° ~ - * ' Y z ' o ( o , , ~ - ~ c % ) Y  a] --m*~>o 

(197) 

As in Section 7.2, the principle of stationary action gives 

6,- 

O~,L - (a~coL) a = 0 

O,L - (0a, L) '0 = 0 (198) 

To obtain the equations of motion we must recall that 

(Oe, L) 0 = O~(Oa.,L) (199) 
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and 

a,h.~, L = h~O,~.,l, L (200) 

Then (198) become 

O , L  - a ~ ( h ~ ) a ~ , , , L  - G ( G , , , L )  = 0 

3¢,L - a~(h~)O,~,,¢,L - 3,,(a,~.c~L) = 0 (201) 

Now, taking into account that [e,,. el,] = C,,,edd and that G h / h  = 
a I.a. hr~3,,h ~ . we get 

O~h, ~, = --C~b+ 3 .  In h (202) 

and (201) become 

Then, 

o r  

Then 

3 0 L  - [a,, + o~ In h - cl',h]Oa.~,L = 0 

O4L - [ G  + a~ In h - C~b]G~¢L = 0 (203) 

Let us calculate explicitly the second of equations (201). We have 

a6 h-'[ I ~ 2,0 = 3" (Ve,,,~)3' 

(' / G . ( , L  = h - I  - ~  3'~3'2Jo 

, ] + ~ ~o,,3'"+3' 21° - m~ (204) 

(205) 

) ' O,,(Oo.~;L) = ( G  In h - I ) h  - j  - 3'.~3'21o _ h-i  2 3'aaa~3'21o 

1 
= - ( 3 , ,  In h)Oa,d,L - h - t  ~ 3'aoalJ~3'210 (206) 

Using (202) and (204) in the second of equations (201). we obtain 

/ ( D t l / ) 3 ' 2 1 o  + ¥ 0 . ) a 3  , I  a1~3'210 - -  m~ + 4 3 ' a O a 3 '  210 _ I,.,b ,a,I, ,210 = 0 - _3-u abY ~ Y  

D ~ 3 ' 2 1 o  __  I ¢'v . . . . .  ~-.. o~. co,,y'),b3" 21° m ~  7c,,.3"1 I, ,,,...,3'21o = 0 

I ) i ~ 3 ' 2 1 0  __  I a __ I . a , l ,  2 1 0  ~ ' (3 '  " COa)k]J3' 210 ~-c..3' .'3' - m~ = 0 (207) 



Dirac-Hestenes Spinor Fields on RC Manifolds 1897  

But 

',fl- to,, = to~a"fl (208) 

and since to~, = 0 because to,,bc__ _to~h, we have 

ya. to` ,  = (eat,, - tomb)Y ,̀ (209) 

Using equation (209) in equation (207), we obtain 

Otl/y2to _ : r" b _ (Dabb Jr. cbb]ya~41y210 _ ?ri~]J = 0 

Recalling the definition of  the torsion tensor, Tab" = to~,, - to};,, + c,,b," we get 

(D +-}T)+yty  2 + m + y  ° = 0 (210) 

where T b a = Tat, y .  
Equation (210) is the Dirac-Hestenes equation on Riemann-Cartan 

spacetime. Observe that if .M is a Lorentzian spacetime [Vg = 0, T(V) = 0, 
R(V) # 0], then equation (210) reduces to 

ya(o  a + /toa)tljyly2 + m~y ° = 0 (211) 

which is exactly the equation proposed by Hestenes (1985) as the equation 
for a spinor field in a gravitational field modeled as a Lorentzian spacetime 
214,. Also, equation (210) is the representation in .~Y(A,t) of  the spinor equation 
proposed by Hehl and Datta (1971) for a covariant Dirac spinor field q* e 
Pspin+{I.3) Xp C 4 on a Riemann-Cartan spacetime. The proof of  this last 
statement is trivial. Indeed, first we multiply ~ in (210) by the idempotent 
field ½(1 + y0), thereby obtaining an equation for the representative of the 
Dirac algebraic spinor field in ~/(.M). Then we translate the equation in/(214.) 
= PS#n+(L3) Xt I, whence, taking a matrix representation with the techniques 
discussed in Section 2, we obtain as equation for q* e Pspin+(I,3) Xp C 4, 

i (~aV~,~  -½Tq*)  - rnXP " = 0, i = ,/-S-i- (212) 

with T =  b ,, y,, Toby,  being the Dirac matrices [equation (31)]. 

We comment here that equation (210) looks like, but it is indeed very 
different from an equation proposed by Ivanenko and Obukhov (1985) as a 
generalization of the so-called Dirac-Kiihler (-Ivanenko) equation for a 
Riemann-Cartan spacetime. The main differences between the equation given 
in Ivanenko and Obukhov (1985) and our equation (210) is that in Ivanenko 
and Obukhov (1985) • e sec ~2"(J/t), whereas in our approach t~,, e ~?÷(3/t)  
is only the representative of the Dirac-Hestenes spinor field in the basis £ 
= {y`,}, and also Ivanenko and Obukhov (1985) use V,,, instead of  V ~ e a • 

Finally we comment that equation (210) has played an important role 
in our recent approach to a geometrical equivalence of the Dirac and Maxwell 
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equations (Vaz and Rodrigues, 1993a) and also in the double solution interpre- 
tation of quantum mechanics (Vaz and Rodrigues, 1993a,b; Rodrigues et 
aL, 1993b). 

8. CONCLUSIONS 

We have presented a rigorous study of the Dirac-Hestenes spinor fields 
(DHSF), their covariant derivatives, and the Dirac-Hestenes equations on a 
Riemann-Cartan manifold At. 

Our study shows in a definitive way that covariant spinor fields (CDSF) 
can be represented by DHSF that are equivalence classes of even sections 
of the Clifford bundle ~ / ( ~ ) ,  i.e., spinors are equivalence classes of a sum 
of even differential forms. We clarified many misconceptions and misunder- 
standing in the earlier literature concerned with the representation of spinor 
fields by differential forms. In particular, we proved that the so-called Dirac- 
Kahler spinor fields that are sections of cC/(J/tt) and are examples of amorphous 
spinor fields (Section 4.3) cannot be used for the representation of the field 
of fermionic matter. With amorphous spinor fields the Dirac-Hestenes equa- 
tion is not covariant. 

We have also presented an elegant and concise formulation of Lagrangian 
theory in the Clifford bundle and used this powerful method to derive the 
Dirac-Hestenes equation on a Riemann-Cartan spacetime. 
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